-
Notifications
You must be signed in to change notification settings - Fork 42
/
ProgressiveNN_atari_1.py
513 lines (456 loc) · 25.3 KB
/
ProgressiveNN_atari_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
#!/usr/bin/python
# -*- coding: utf-8 -*-
# author: yao62995 <[email protected]>
import re
import signal
import threading
import gym
import scipy.signal
import cv2
from tensorflow.RNNs.rnn_cell import BasicLSTMCell
from common import *
tf.app.flags.DEFINE_string("game", "Breakout-v0", "gym environment name")
tf.app.flags.DEFINE_string("train_dir", "./models/experiment_pnn/column_1", "gym environment name")
tf.app.flags.DEFINE_integer("gpu", 0, "gpu id")
tf.app.flags.DEFINE_bool("use_lstm", False, "use LSTM layer")
tf.app.flags.DEFINE_integer("t_max", 8, "episode max time step")
tf.app.flags.DEFINE_integer("t_train", 5e7, "train max time step")
tf.app.flags.DEFINE_integer("jobs", 8, "parallel running thread number")
tf.app.flags.DEFINE_integer("frame_skip", 4, "number of frame skip")
tf.app.flags.DEFINE_integer("frame_seq", 4, "number of frame sequence")
tf.app.flags.DEFINE_string("opt", "rms", "choice in [rms, adam, sgd]")
tf.app.flags.DEFINE_float("learn_rate", 7e-4, "param of smooth")
tf.app.flags.DEFINE_integer("grad_clip", 40.0, "gradient clipping cut-off")
tf.app.flags.DEFINE_float("eps", 1e-8, "param of smooth")
tf.app.flags.DEFINE_float("entropy_beta", 1e-2, "param of policy entropy weight")
tf.app.flags.DEFINE_float("gamma", 0.95, "discounted ratio")
tf.app.flags.DEFINE_float("train_step", 0, "train step. unchanged")
flags = tf.app.flags.FLAGS
class AtariEnv(object):
def __init__(self, env, screen_size=(84, 84)):
self.env = env
# constants
self.screen_size = screen_size
self.frame_skip = flags.frame_skip
self.frame_seq = flags.frame_seq
# local variables
self.state = np.zeros(self.state_shape, dtype=np.float32)
@property
def state_shape(self):
return [self.screen_size[0], self.screen_size[1], self.frame_seq]
@property
def action_dim(self):
return self.env.action_space.n
def precess_image(self, image):
image = cv2.cvtColor(cv2.resize(image, self.screen_size), cv2.COLOR_BGR2GRAY)
image = np.divide(image, 256.0)
return image
def reset_env(self):
obs = self.env.reset()
self.state[:, :, :-1] = 0
self.state[:, :, -1] = self.precess_image(obs)
return self.state
def forward_action(self, action):
obs, reward, done = None, None, None
for _ in xrange(self.frame_skip):
obs, reward, done, _ = self.env.step(action)
if done:
break
obs = self.precess_image(obs)
obs = np.reshape(obs, newshape=list(self.screen_size) + [1]) / 256.0
self.state = np.append(self.state[:, :, 1:], obs, axis=2)
# clip reward in range(-1, 1)
reward = np.clip(reward, -1, 1)
return self.state, reward, done
class A3CNet(object):
def __init__(self, state_shape, action_dim, scope, column_id=1):
with tf.device("/gpu:%d" % flags.gpu):
# placeholder
self.state = tf.placeholder(tf.float32, shape=[None] + list(state_shape), name="state") # (None, 84, 84, 4)
self.action = tf.placeholder(tf.float32, shape=[None, action_dim], name="action") # (None, actions)
self.target_q = tf.placeholder(tf.float32, shape=[None])
with tf.variable_scope(scope) as scope:
# shared parts
with tf.variable_scope("col_%d_shared" % column_id):
conv1, self.w1, self.b1 = conv2d(self.state, (8, 8, state_shape[-1], 16), "conv_1", stride=4,
padding="VALID", with_param=True) # (None, 20, 20, 16)
conv1 = NetTools.batch_normalized(conv1)
conv2, self.w2, self.b2 = conv2d(conv1, (4, 4, 16, 32), "conv_2", stride=2,
padding="VALID", with_param=True) # (None, 9, 9, 32)
conv2 = NetTools.batch_normalized(conv2)
flat1 = tf.reshape(conv2, (-1, 9 * 9 * 32), name="flat1")
fc_1, self.w3, self.b3 = full_connect(flat1, (9 * 9 * 32, 256), "fc1", with_param=True)
# policy parts
with tf.variable_scope("col_%d_policy" % column_id):
pi_fc_1, self.pi_w1, self.pi_b1 = full_connect(fc_1, (256, 256), "pi_fc1", with_param=True)
pi_fc_2, self.pi_w2, self.pi_b2 = full_connect(pi_fc_1, (256, action_dim), "pi_fc2", activate=None,
with_param=True)
self.policy_out = tf.nn.softmax(pi_fc_2, name="pi_out")
# value parts
with tf.variable_scope("col_%d_value" % column_id):
v_fc_1, self.v_w1, self.v_b1 = full_connect(fc_1, (256, 256), "v_fc1", with_param=True)
v_fc_2, self.v_w2, self.v_b2 = full_connect(v_fc_1, (256, 1), "v_fc2", activate=None, with_param=True)
self.value_out = tf.reshape(v_fc_2, [-1], name="v_out")
# loss values
with tf.op_scope([self.policy_out, self.value_out], "col_%d_loss" % column_id):
self.entropy = - tf.reduce_sum(self.policy_out * tf.log(self.policy_out + flags.eps))
time_diff = self.target_q - self.value_out
policy_prob = tf.log(tf.reduce_sum(tf.mul(self.policy_out, self.action), reduction_indices=1))
self.policy_loss = - tf.reduce_sum(policy_prob * time_diff)
self.value_loss = tf.reduce_sum(tf.square(time_diff))
self.total_loss = self.policy_loss + self.value_loss * 0.5 + self.entropy * flags.entropy_beta
def get_policy(self, sess, state):
return sess.run(self.policy_out, feed_dict={self.state: [state]})[0]
def get_value(self, sess, state):
return sess.run(self.value_out, feed_dict={self.state: [state]})[0]
def get_vars(self):
return [self.w1, self.b1, self.w2, self.b2, self.w3, self.b3,
self.pi_w1, self.pi_b1, self.pi_w2, self.pi_b2,
self.v_w1, self.v_b1, self.v_w2, self.v_b2]
class A3CLSTMNet(object):
def __init__(self, state_shape, action_dim, scope):
class InnerLSTMCell(BasicLSTMCell):
def __init__(self, num_units, forget_bias=1.0, input_size=None):
BasicLSTMCell.__init__(self, num_units, forget_bias=forget_bias, input_size=input_size)
self.matrix, self.bias = None, None
def __call__(self, inputs, state, scope=None):
"""
Long short-term memory cell (LSTM).
implement from BasicLSTMCell.__call__
"""
with tf.variable_scope(scope or type(self).__name__): # "BasicLSTMCell"
# Parameters of gates are concatenated into one multiply for efficiency.
c, h = tf.split(1, 2, state)
concat = self.linear([inputs, h], 4 * self._num_units, True)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = tf.split(1, 4, concat)
new_c = c * tf.sigmoid(f + self._forget_bias) + tf.sigmoid(i) * tf.tanh(j)
new_h = tf.tanh(new_c) * tf.sigmoid(o)
return new_h, tf.concat(1, [new_c, new_h])
def linear(self, args, output_size, bias, bias_start=0.0, scope=None):
"""
Linear map: sum_i(args[i] * W[i]), where W[i] is a variable.
implement from function of tensorflow.python.ops.rnn_cell.linear()
"""
if args is None or (isinstance(args, (list, tuple)) and not args):
raise ValueError("`args` must be specified")
if not isinstance(args, (list, tuple)):
args = [args]
# Calculate the total size of arguments on dimension 1.
total_arg_size = 0
shapes = [a.get_shape().as_list() for a in args]
for shape in shapes:
if len(shape) != 2:
raise ValueError("Linear is expecting 2D arguments: %s" % str(shapes))
if not shape[1]:
raise ValueError("Linear expects shape[1] of arguments: %s" % str(shapes))
else:
total_arg_size += shape[1]
# Now the computation.
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [total_arg_size, output_size])
if len(args) == 1:
res = tf.matmul(args[0], matrix)
else:
res = tf.matmul(tf.concat(1, args), matrix)
if not bias:
return res
bias_term = tf.get_variable(
"Bias", [output_size],
initializer=tf.constant_initializer(bias_start))
self.matrix = matrix
self.bias = bias_term
return res + bias_term
with tf.device("/gpu:%d" % flags.gpu):
# placeholder
self.state = tf.placeholder(tf.float32, shape=[None] + list(state_shape), name="state") # (None, 84, 84, 4)
self.action = tf.placeholder(tf.float32, shape=[None, action_dim], name="action") # (None, actions)
self.target_q = tf.placeholder(tf.float32, shape=[None])
# shared parts
with tf.variable_scope("%s_shared" % scope):
conv1, self.w1, self.b1 = conv2d(self.state, (8, 8, state_shape[-1], 16), "conv_1", stride=4,
padding="VALID", with_param=True) # (None, 20, 20, 16)
conv2, self.w2, self.b2 = conv2d(conv1, (4, 4, 16, 32), "conv_2", stride=2,
padding="VALID", with_param=True) # (None, 9, 9, 32)
flat1 = tf.reshape(conv2, (-1, 9 * 9 * 32), name="flat1")
fc_1, self.w3, self.b3 = full_connect(flat1, (9 * 9 * 32, 256), "fc1", with_param=True)
# rnn parts
with tf.variable_scope("%s_rnn" % scope) as scope:
h_flat1 = tf.reshape(fc_1, (1, -1, 256))
self.lstm = InnerLSTMCell(256)
self.initial_lstm_state = tf.placeholder(tf.float32, shape=[1, self.lstm.state_size])
self.sequence_length = tf.placeholder(tf.int32, [1])
lstm_outputs, self.lstm_state = tf.nn.dynamic_rnn(self.lstm, h_flat1,
initial_state=self.initial_lstm_state,
sequence_length=self.sequence_length,
time_major=False,
scope=scope)
lstm_outputs = tf.reshape(lstm_outputs, [-1, 256])
# policy parts
with tf.variable_scope("%s_policy" % scope):
pi_fc_1, self.pi_w1, self.pi_b1 = full_connect(lstm_outputs, (256, 256), "pi_fc1", with_param=True)
pi_fc_2, self.pi_w2, self.pi_b2 = full_connect(pi_fc_1, (256, action_dim), "pi_fc2", activate=None,
with_param=True)
self.policy_out = tf.nn.softmax(pi_fc_2, name="pi_out")
# value parts
with tf.variable_scope("%s_value" % scope):
v_fc_1, self.v_w1, self.v_b1 = full_connect(lstm_outputs, (256, 256), "v_fc1", with_param=True)
v_fc_2, self.v_w2, self.v_b2 = full_connect(v_fc_1, (256, 1), "v_fc2", activate=None, with_param=True)
self.value_out = tf.reshape(v_fc_2, [-1], name="v_out")
# loss values
with tf.op_scope([self.policy_out, self.value_out], "%s_loss" % scope):
self.entropy = - tf.reduce_mean(self.policy_out * tf.log(self.policy_out + flags.eps))
time_diff = self.target_q - self.value_out
policy_prob = tf.log(tf.reduce_sum(tf.mul(self.policy_out, self.action), reduction_indices=1))
self.policy_loss = - tf.reduce_sum(policy_prob * time_diff)
self.value_loss = tf.reduce_sum(tf.square(time_diff))
self.total_loss = self.policy_loss + self.value_loss * 0.5 + self.entropy * flags.entropy_beta
# lstm state
self.lstm_state_out = np.zeros((1, self.lstm.state_size), dtype=np.float32)
def reset_lstm_state(self):
self.lstm_state_out = np.zeros((1, self.lstm.state_size), dtype=np.float32)
def get_policy(self, sess, state):
policy_out, self.lstm_state_out = sess.run([self.policy_out, self.lstm_state],
feed_dict={self.state: [state],
self.initial_lstm_state: self.lstm_state_out,
self.sequence_length: [1]})
return policy_out[0]
def get_value(self, sess, state):
value_out, _ = sess.run([self.value_out, self.lstm_state], feed_dict={self.state: [state],
self.initial_lstm_state: self.lstm_state_out,
self.sequence_length: [1]})
return value_out[0]
def get_vars(self):
return [self.w1, self.b1, self.w2, self.b2, self.w3, self.b3,
self.lstm.matrix, self.lstm.bias,
self.pi_w1, self.pi_b1, self.pi_w2, self.pi_b2,
self.v_w1, self.v_b1, self.v_w2, self.v_b2]
class A3CSingleThread(threading.Thread):
def __init__(self, thread_id, master):
self.thread_id = thread_id
threading.Thread.__init__(self, name="thread_%d" % thread_id)
self.env = AtariEnv(gym.make(flags.game))
self.master = master
# local network
if flags.use_lstm:
self.local_net = A3CLSTMNet(self.env.state_shape, self.env.action_dim, scope="local_net_%d" % thread_id)
else:
self.local_net = A3CNet(self.env.state_shape, self.env.action_dim, scope="local_net_%d" % thread_id)
# sync network
self.sync = self.sync_network(master.shared_net)
# accumulate gradients
self.accum_grads = self.create_accumulate_gradients()
self.do_accum_grads_ops = self.do_accumulate_gradients()
self.reset_accum_grads_ops = self.reset_accumulate_gradients()
# collect summaries for debugging
summaries = list()
summaries.append(tf.scalar_summary("entropy/%d" % self.thread_id, self.local_net.entropy))
summaries.append(tf.scalar_summary("policy_loss/%d" % self.thread_id, self.local_net.policy_loss))
summaries.append(tf.scalar_summary("value_loss/%d" % self.thread_id, self.local_net.value_loss))
summaries.append(tf.scalar_summary("total_loss/%d" % self.thread_id, self.local_net.total_loss))
# apply accumulated gradients
with tf.device("/gpu:%d" % flags.gpu):
clip_accum_grads = [tf.clip_by_value(grad, -flags.grad_clip, flags.grad_clip) for grad in self.accum_grads]
self.apply_gradients = master.shared_opt.apply_gradients(
zip(clip_accum_grads, master.shared_net.get_vars()), global_step=master.global_step)
self.summary_op = tf.merge_summary(summaries)
def sync_network(self, source_net):
sync_ops = []
with tf.device("/gpu:%d" % flags.gpu):
with tf.op_scope([], name="sync_ops_%d" % self.thread_id):
for (target_var, source_var) in zip(self.local_net.get_vars(), source_net.get_vars()):
ops = tf.assign(target_var, source_var)
sync_ops.append(ops)
return tf.group(*sync_ops, name="sync_group_%d" % self.thread_id)
def create_accumulate_gradients(self):
accum_grads = []
with tf.device("/gpu:%d" % flags.gpu):
with tf.op_scope([self.local_net], name="create_accum_%d" % self.thread_id):
for var in self.local_net.get_vars():
zero = tf.zeros(var.get_shape().as_list(), dtype=var.dtype)
name = var.name.replace(":", "_") + "_accum_grad"
accum_grad = tf.Variable(zero, name=name, trainable=False)
accum_grads.append(accum_grad.ref())
return accum_grads
def do_accumulate_gradients(self):
net = self.local_net
accum_grad_ops = []
with tf.device("/gpu:%d" % flags.gpu):
with tf.op_scope([net], name="grad_ops_%d" % self.thread_id):
var_refs = [v.ref() for v in net.get_vars()]
grads = tf.gradients(net.total_loss, var_refs, gate_gradients=False,
aggregation_method=None,
colocate_gradients_with_ops=False)
with tf.op_scope([], name="accum_ops_%d" % self.thread_id):
for (grad, var, accum_grad) in zip(grads, net.get_vars(), self.accum_grads):
name = var.name.replace(":", "_") + "_accum_grad_ops"
accum_ops = tf.assign_add(accum_grad, grad, name=name)
accum_grad_ops.append(accum_ops)
return tf.group(*accum_grad_ops, name="accum_group_%d" % self.thread_id)
def reset_accumulate_gradients(self):
net = self.local_net
reset_grad_ops = []
with tf.device("/gpu:%d" % flags.gpu):
with tf.op_scope([net], name="reset_grad_ops_%d" % self.thread_id):
for (var, accum_grad) in zip(net.get_vars(), self.accum_grads):
zero = tf.zeros(var.get_shape().as_list(), dtype=var.dtype)
name = var.name.replace(":", "_") + "_reset_grad_ops"
reset_ops = tf.assign(accum_grad, zero, name=name)
reset_grad_ops.append(reset_ops)
return tf.group(*reset_grad_ops, name="reset_accum_group_%d" % self.thread_id)
def weighted_choose_action(self, pi_probs):
r = random.uniform(0, sum(pi_probs))
upto = 0
for idx, prob in enumerate(pi_probs):
if upto + prob >= r:
return idx
upto += prob
return len(pi_probs) - 1
def forward_explore(self, train_step):
terminal = False
t_start = train_step
rollout_path = {"state": [], "action": [], "rewards": [], "done": []}
while not terminal and (train_step - t_start <= flags.t_max):
pi_probs = self.local_net.get_policy(self.master.sess, self.env.state)
action = self.weighted_choose_action(pi_probs)
_, reward, terminal = self.env.forward_action(action)
train_step += 1
rollout_path["state"].append(self.env.state)
one_hot_action = np.zeros(self.env.action_dim)
one_hot_action[action] = 1
rollout_path["action"].append(one_hot_action)
rollout_path["rewards"].append(reward)
rollout_path["done"].append(terminal)
return train_step, rollout_path
def discount(self, x):
return scipy.signal.lfilter([1], [1, -flags.gamma], x[::-1], axis=0)[::-1]
def run(self):
sess = self.master.sess
self.env.reset_env()
loop = 0
while flags.train_step <= flags.t_train:
train_step = 0
loop += 1
# reset gradients
sess.run(self.reset_accum_grads_ops)
# sync variables
sess.run(self.sync)
# forward explore
train_step, rollout_path = self.forward_explore(train_step)
# rollout for discounted R values
if rollout_path["done"][-1]:
rollout_path["rewards"][-1] = 0
self.env.reset_env()
if flags.use_lstm:
self.local_net.reset_lstm_state()
else:
rollout_path["rewards"][-1] = self.local_net.get_value(sess, rollout_path["state"][-1])
rollout_path["returns"] = self.discount(rollout_path["rewards"])
# accumulate gradients
lc_net = self.local_net
fetches = [self.do_accum_grads_ops, self.master.global_step]
if loop % 10 == 0:
fetches.append(self.summary_op)
if flags.use_lstm:
res = sess.run(fetches, feed_dict={lc_net.state: rollout_path["state"],
lc_net.action: rollout_path["action"],
lc_net.target_q: rollout_path["returns"],
lc_net.initial_lstm_state: lc_net.lstm_state_out,
lc_net.sequence_length: [1]})
else:
res = sess.run(fetches, feed_dict={lc_net.state: rollout_path["state"],
lc_net.action: rollout_path["action"],
lc_net.target_q: rollout_path["returns"]})
if loop % 10 == 0:
global_step, summary_str = res[1], res[2]
self.master.summary_writer.add_summary(summary_str, global_step=global_step)
self.master.global_step_val = int(global_step)
# async update grads to global network
sess.run(self.apply_gradients)
flags.train_step += train_step
# evaluate
if loop % 10 == 0 and self.thread_id == 1:
self.test_phase()
if loop % 1000 and self.thread_id == 1:
save_model(self.master.sess, flags.train_dir, self.master.saver, "a3c_model",
global_step=self.master.global_step_val)
def test_phase(self, episode=10, max_step=1e3):
rewards = []
start_time = time.time()
while episode > 0:
terminal = False
self.env.reset_env()
episode_reward = 0
test_step = 0
while not terminal and test_step < max_step:
pi_probs = self.local_net.get_policy(self.master.sess, self.env.state)
action = self.weighted_choose_action(pi_probs)
_, reward, terminal = self.env.forward_action(action)
test_step += 1
episode_reward += reward
rewards.append(episode_reward)
episode -= 1
elapsed_time = int(time.time() - start_time)
avg_reward = float(np.mean(rewards))
mid_reward = float(np.median(rewards))
std_reward = float(np.std(rewards))
logger.info("game=%s, train_step=%d, episode=%d, reward(avg:%.2f, mid:%.2f, std:%.2f), time=%d(s)" % (
flags.game, flags.train_step, len(rewards), avg_reward, mid_reward, std_reward, elapsed_time))
class A3CAtari(object):
def __init__(self):
self.env = AtariEnv(gym.make(flags.game))
self.graph = tf.get_default_graph()
# shared network
if flags.use_lstm:
self.shared_net = A3CLSTMNet(self.env.state_shape, self.env.action_dim, scope="columns")
else:
self.shared_net = A3CNet(self.env.state_shape, self.env.action_dim, scope="columns")
# shared optimizer
self.shared_opt, self.global_step, self.summary_writer = self.shared_optimizer()
self.global_step_val = 0
# local training threads
self.jobs = []
for thread_id in xrange(flags.jobs):
job = A3CSingleThread(thread_id, self)
self.jobs.append(job)
# session
self.sess = tf.Session(config=tf.ConfigProto(log_device_placement=False,
allow_soft_placement=True))
self.sess.run(tf.initialize_all_variables())
# saver
self.saver = tf.train.Saver(var_list=self.shared_net.get_vars(), max_to_keep=3)
restore_model(self.sess, flags.train_dir, self.saver)
def shared_optimizer(self):
with tf.device("/gpu:%d" % flags.gpu):
# optimizer
if flags.opt == "rms":
optimizer = tf.train.RMSPropOptimizer(flags.learn_rate, name="global_optimizer")
elif flags.opt == "adam":
optimizer = tf.train.AdamOptimizer(flags.learn_rate, name="global_optimizer")
else:
logger.error("invalid optimizer", to_exit=True)
global_step = tf.get_variable("global_step", [], initializer=tf.constant_initializer(0), trainable=False)
summary_writer = tf.train.SummaryWriter(flags.train_dir, graph_def=self.graph)
return optimizer, global_step, summary_writer
def train(self):
flags.train_step = 0
signal.signal(signal.SIGINT, signal_handler)
for job in self.jobs:
job.start()
for job in self.jobs:
job.join()
def signal_handler():
sys.exit(0)
def main(_):
# mkdir
if not os.path.isdir(flags.train_dir):
os.makedirs(flags.train_dir)
# remove old tfevents files
for f in os.listdir(flags.train_dir):
if re.search(".*tfevents.*", f):
os.remove(os.path.join(flags.train_dir, f))
# model
model = A3CAtari()
model.train()
if __name__ == "__main__":
tf.app.run()