线段树题,写起来略恶心
维护每个区间左右端点选/不选的答案,合并取$\min$ 还需要记录左右端点的值
#include <array>
#include <functional>
#include <iostream>
#include <vector>
using namespace std;
const int N = 100005;
namespace SegmentTree {
#define ls(x) (x * 2)
#define rs(x) (x * 2 + 1)
struct Node {
int lv, rv;
int tag;
array<array<int, 2>, 2> val;
array<int, 2> &operator[](const int x) {
return val[x];
}
const array<int, 2> operator[](const int x) const {
return val[x];
}
};
array<Node, N * 4> tr;
void pushdown(int x) {
if (tr[x].tag) {
tr[ls(x)].tag += tr[x].tag;
tr[ls(x)].lv += tr[x].tag;
tr[ls(x)].rv += tr[x].tag;
tr[rs(x)].tag += tr[x].tag;
tr[rs(x)].lv += tr[x].tag;
tr[rs(x)].rv += tr[x].tag;
tr[x].tag = 0;
}
}
Node merge(const Node &L, const Node &R, int tag = 0) {
Node res;
res.tag = tag;
res.lv = L.lv;
res.rv = R.rv;
res[0][0] = L[0][1] + R[1][0] - (L.rv == R.lv);
res[0][0] = min(res[0][0], L[0][0] + R[1][0]);
res[0][0] = min(res[0][0], L[0][1] + R[0][0]);
res[1][0] = L[1][1] + R[1][0] - (L.rv == R.lv);
res[1][0] = min(res[1][0], L[1][0] + R[1][0]);
res[1][0] = min(res[1][0], L[1][1] + R[0][0]);
res[0][1] = L[0][1] + R[1][1] - (L.rv == R.lv);
res[0][1] = min(res[0][1], L[0][1] + R[0][1]);
res[0][1] = min(res[0][1], L[0][0] + R[1][1]);
res[1][1] = L[1][1] + R[1][1] - (L.rv == R.lv);
res[1][1] = min(res[1][1], L[1][1] + R[0][1]);
res[1][1] = min(res[1][1], L[1][0] + R[1][1]);
return res;
}
void build(int rt, int l, int r, const vector<int> &p) {
if (l == r) {
tr[rt][0][0] = 0;
tr[rt][1][0] = tr[rt][0][1] = tr[rt][1][1] = 1;
tr[rt].tag = 0;
tr[rt].lv = tr[rt].rv = p[l];
return;
}
int mid = (l + r) / 2;
build(ls(rt), l, mid, p);
build(rs(rt), mid + 1, r, p);
tr[rt].tag = 0;
tr[rt] = merge(tr[ls(rt)], tr[rs(rt)]);
}
void update(int rt, int l, int r, int L, int R, int v) {
if (L <= l && R >= r) {
tr[rt].tag += v;
tr[rt].lv += v;
tr[rt].rv += v;
return;
}
pushdown(rt);
int mid = (l + r) / 2;
if (L <= mid) {
update(ls(rt), l, mid, L, R, v);
}
if (mid < R) {
update(rs(rt), mid + 1, r, L, R, v);
}
tr[rt] = merge(tr[ls(rt)], tr[rs(rt)], tr[rt].tag);
}
Node query(int rt, int l, int r, int L, int R) {
if (L <= l && R >= r) {
return tr[rt];
}
pushdown(rt);
int mid = (l + r) / 2;
if (R <= mid) {
return query(ls(rt), l, mid, L, R);
} else if (L > mid) {
return query(rs(rt), mid + 1, r, L, R);
} else {
return merge(query(ls(rt), l, mid, L, mid),
query(rs(rt), mid + 1, r, mid + 1, R));
}
}
} // namespace SegmentTree
int n, q;
int main() {
cin >> n;
vector<int> a(n + 1);
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
for (int i = 1; i < n; i++) {
a[i] = a[i + 1] - a[i];
}
SegmentTree::build(1, 1, n - 1, a);
cin >> q;
for (int i = 1; i <= q; i++) {
char opt;
int s, t, a, b;
cin >> opt;
if (opt == 'A') {
cin >> s >> t >> a >> b;
if (s != 1)
SegmentTree::update(1, 1, n - 1, s - 1, s - 1, a);
if (t != n)
SegmentTree::update(1, 1, n - 1, t, t, -(a + b * (t - s)));
if (s != t)
SegmentTree::update(1, 1, n - 1, s, t - 1, b);
} else {
cin >> a >> b;
if (a == b || b - a == 1) {
cout << 1 << endl;
continue;
}
cout << SegmentTree::query(1, 1, n - 1, a, b - 1)[1][1] << endl;
}
}
return 0;
}
// Asusetic eru quionours
#线段树