指数上的就是欧拉函数前缀和
所以原式就是$\large(n!)^{2n}(\prod\limits_{d}d^{2\sum\varphi(\frac{n}{d})-1})^{-2}$
指数部分需要用欧拉定理优化
#include <iostream>
using namespace std;
const int N = 1000000 + 5;
const int mod = 104857601;
int n;
bool vis[N];
int prime[80001], phi[N], pcnt;
long long res = 1, ans = 1;
long long qpow(long long a, int b) {
long long res = 1;
while (b) {
if (b & 1) {
res = res * a % mod;
}
a = a * a % mod;
b /= 2;
}
return res;
}
void pre(int x) {
phi[1] = 1;
for (int i = 2; i <= x; i++) {
res = 1ll * res * i % mod;
if (!vis[i]) {
prime[++pcnt] = i;
phi[i] = i - 1;
}
for (int j = 1; j <= pcnt; j++) {
if (prime[j] * i > x) {
break;
}
vis[prime[j] * i] = 1;
if (i % prime[j] == 0) {
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
}
int main() {
cin >> n;
pre(n);
for (int i = 1; i <= n; i++) {
phi[i] = (phi[i] * 2 + phi[i - 1]) % (mod - 1);
}
res = qpow(res, 2 * n);
for (int i = 2; i <= n; i++) {
ans = 1ll * ans * qpow(i, phi[n / i] - 1) % mod;
}
ans = 1ll * res * qpow(ans, mod - 3) % mod;
cout << ans;
return 0;
}