-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
270 lines (231 loc) · 11.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
import os
import time
import argparse
import torch
import torch.nn as nn
from torch.cuda.amp import autocast, GradScaler
import numpy as np
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR, StepLR
from data.load_train_data import TrainData, train_data_load
from torch.utils.data import DataLoader
import sklearn.metrics as metrics
from net.arangementnet import teeth_arangement_model
from util import IOStream, Tooth_Assembler
from net.loss import GeometricReconstructionLoss, symmetric_loss, spatial_Relation_Loss
import config.config as cfg
def model_initial(model, model_name):
# 加载预训练模型
pretrained_dict = torch.load(model_name)["model"]
model_dict = model.state_dict()
# 1. filter out unnecessary keys
# pretrained_dictf = {k.replace('module.', ""): v for k, v in pretrained_dict.items() if k.replace('module.', "") in model_dict}
pretrained_dictf = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dictf)
# 3. load the new state dict
model.load_state_dict(model_dict)
print("over")
def _init_():
if not os.path.exists('outputs'):
os.makedirs('outputs')
if not os.path.exists('./outputs/' + args.exp_name):
os.makedirs('./outputs/' + args.exp_name)
if not os.path.exists('./outputs/' + args.exp_name + '/' + 'models'):
os.makedirs('./outputs/' + args.exp_name + '/' + 'models')
os.system('cp main_cls.py outputs' + '/' + args.exp_name + '/' + 'main_cls.py.backup')
os.system('cp model.py outputs' + '/' + args.exp_name + '/' + 'model.py.backup')
os.system('cp util.py outputs' + '/' + args.exp_name + '/' + 'util.py.backup')
os.system('cp data.py outputs' + '/' + args.exp_name + '/' + 'data.py.backup')
def train(args, io):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
file_path = "./dataset/train/"
train_loader = DataLoader(TrainData(file_path), num_workers=0,
batch_size=args.batch_size, shuffle=True, drop_last=True)
file_path = "./dataset/test/"
# test_loader = DataLoader(TrainData(file_path), num_workers=0,
# batch_size=args.test_batch_size, shuffle=True, drop_last=False)
device = torch.device("cuda" if args.cuda else "cpu")
# Try to load models
model = teeth_arangement_model()
tooth_assembler = Tooth_Assembler()
reconl1_loss = GeometricReconstructionLoss()
model_path = "./outputs/model_2000_rotate_transv2.pth"
model_initial(model, model_path)
# model = nn.DataParallel(model)
print("Let's use", torch.cuda.device_count(), "GPUs!")
if args.use_sgd:
print("Use SGD")
opt = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-4)
#opt = optim.SGD([{'params': model.local_fea.parameters(), 'lr': args.lr}], lr=args.lr, momentum=args.momentum, weight_decay=1e-4)
# opt = optim.SGD([
# {'params': model.teeth_fea.parameters(), 'lr': args.lr},
# {'params': model.global_fea.parameters(), 'lr': args.lr},
# {'params': model.output.parameters(), 'lr': args.lr}])
else:
print("Use Adam")
opt = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-4)
if args.scheduler == 'cos':
scheduler = CosineAnnealingLR(opt, args.epochs, eta_min=1e-6, last_epoch = -1)
elif args.scheduler == 'step':
scheduler = StepLR(opt, step_size=20, gamma=0.7)
model.cuda()
model.train()
scaler = GradScaler()
best_test_acc = 0
inter_nums = len(train_loader)
for epoch in range(args.epochs):
####################
# Train
####################
if args.scheduler == 'cos':
scheduler.step()
elif args.scheduler == 'step':
if opt.param_groups[0]['lr'] > 1e-5:
scheduler.step()
if opt.param_groups[0]['lr'] < 1e-5:
for param_group in opt.param_groups:
param_group['lr'] = 1e-5
train_loss = 0.0
count = 0.0
recon_loss = 0
c_loss = 0
dof_loss = 0
trans_loss = 0
angle_loss = 0
sym_loss = 0
spl_loss = 0
# for data, edges, label in train_loader:
nums = 0
tic = time.time()
train_data, train_label, teeth_center, dof = [], [], [], []
nnums = 0
for cafh in train_loader:
train_data, train_label, teeth_center, gdofs, gtrans, tweights, rweights, mask_index = train_data_load(cafh)
train_data = train_data.cuda().float()
train_label = train_label.cuda().float()
teeth_center = teeth_center.cuda().float()
gdofs = gdofs.cuda().float()
gtrans = gtrans.cuda().float()
tweights = tweights.cuda().float()
rweights = rweights.cuda().float()
mask_index = mask_index.cuda().long()
weights = rweights -1 + tweights
gdofs = gdofs#
nums = nums + 1
batch_size = train_data.size()[0]
opt.zero_grad()
# data = torch.squeeze(data)
with autocast():
pdofs, ptrans = model(train_data, teeth_center)
assembled = tooth_assembler(train_data, teeth_center, pdofs, ptrans, device)
nnums = nnums + 1
recon_loss_, c_loss_ = reconl1_loss(assembled, train_label, weights, device)
dof_loss_ = torch.sum(torch.sum(F.smooth_l1_loss(pdofs[mask_index], gdofs[mask_index], reduction= "none"), dim=-1) * rweights[mask_index]) / pdofs[mask_index].shape[0]
trans_loss_ = torch.sum(torch.sum(F.smooth_l1_loss(ptrans, gtrans, reduction= "none"), dim=-1) * tweights) / ptrans.shape[0]
# gtrans_numpy = gtrans.detach().cpu().numpy()
angle_loss_ = torch.sum(1-torch.sum(pdofs[mask_index]*gdofs[mask_index], dim=-1)) / pdofs[mask_index].shape[0]
sym_loss_ = dof_loss_#symmetric_loss(assembled)
spl_loss_ = dof_loss_#spatial_Relation_Loss(assembled, train_label, weights, device)
loss = recon_loss_ + c_loss_ * 1 + dof_loss_ * 10 + angle_loss_ + trans_loss_ * 1 # + 1*spl_loss_ #+ 1*sym_loss_ #
scaler.scale(loss).backward()
# Unscales gradients and calls
# or skips optimizer.step()
scaler.step(opt)
# Updates the scale for next iteration
scaler.update()
count += batch_size
train_loss += loss.item()
recon_loss += recon_loss_.item()
c_loss += c_loss_.item()
dof_loss += dof_loss_.item()
trans_loss += trans_loss_.item()
angle_loss += angle_loss_.item()
sym_loss += sym_loss_.item()
spl_loss += spl_loss_.item()
if nums % cfg.VIEW_NUMS == 0:
toc = time.time()
train_loss = train_loss/ (cfg.VIEW_NUMS)
recon_loss = recon_loss/(cfg.VIEW_NUMS)
c_loss = c_loss/(cfg.VIEW_NUMS)
dof_loss = dof_loss/(cfg.VIEW_NUMS)
trans_loss = trans_loss/(cfg.VIEW_NUMS)
angle_loss = angle_loss/(cfg.VIEW_NUMS)
sym_loss = sym_loss/(cfg.VIEW_NUMS)
spl_loss = spl_loss/(cfg.VIEW_NUMS)
print("lr = ", opt.param_groups[0]['lr'])
outstr = 'epoch %d /%d,epoch %d /%d, loss: %.6f, recon_loss: %.6f, c_loss: %.6f, dof_loss: %.6f, trans_loss: %.6f, sym_loss: %.6f, spl_loss: %.6f, angle_loss: %.6f, const time: %.6f' % (
epoch,args.epochs, nums, inter_nums, train_loss, recon_loss, c_loss, dof_loss, trans_loss, sym_loss, spl_loss, angle_loss, toc - tic)
io.cprint(outstr)
train_loss = 0.0
count = 0.0
recon_loss = 0
c_loss = 0
dof_loss = 0
trans_loss =0
angle_loss = 0
sym_loss = 0
spl_loss = 0
tic = time.time()
if (epoch) % cfg.SAVE_MODEL == 0:
torch.save({'model': model.state_dict(), 'epoch': epoch}, 'outputs/teethseg_model_' + str(epoch)+ '.pth')
if __name__ == "__main__":
torch.backends.cudnn.enabled = False
# Training settings
parser = argparse.ArgumentParser(description='Point Cloud Recognition')
parser.add_argument('--exp_name', type=str, default='cls_1024', metavar='N',
help='Name of the experiment')
parser.add_argument('--model', type=str, default='dgcnn', metavar='N',
choices=['pointnet', 'dgcnn'],
help='Model to use, [pointnet, dgcnn]')
parser.add_argument('--dataset', type=str, default='modelnet40', metavar='N',
choices=['modelnet40'])
parser.add_argument('--batch_size', type=int, default=8, metavar='batch_size',
help='Size of batch)')
parser.add_argument('--test_batch_size', type=int, default=1, metavar='batch_size',
help='Size of batch)')
parser.add_argument('--epochs', type=int, default=2001, metavar='N',
help='number of episode to train ')
parser.add_argument('--use_sgd', type=bool, default=True,
help='Use SGD')
parser.add_argument('--lr', type=float, default=1.5*1e-4, metavar='LR',
help='learning rate (default: 0.001, 0.1 if using sgd)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--scheduler', type=str, default='cos', metavar='N',
choices=['cos', 'step'],
help='Scheduler to use, [cos, step]')
parser.add_argument('--no_cuda', type=bool, default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--eval', type=bool, default=False,
help='evaluate the model')
parser.add_argument('--num_points', type=int, default=2048,
help='num of points to use')
parser.add_argument('--dropout', type=float, default=0.5,
help='initial dropout rate')
parser.add_argument('--emb_dims', type=int, default=2048, metavar='N',
help='Dimension of embeddings')
parser.add_argument('--k', type=int, default=40, metavar='N',
help='Num of nearest neighbors to use')
parser.add_argument('--model_path', type=str, default='', metavar='N',
help='Pretrained model path')
args = parser.parse_args()
_init_()
io = IOStream('outputs/' + args.exp_name + '/run.log')
io.cprint(str(args))
args.cuda = not args.no_cuda and torch.cuda.is_available()
# torch.manual_seed(args.seed)
if args.cuda:
io.cprint(
'Using GPU : ' + str(torch.cuda.current_device()) + ' from ' + str(torch.cuda.device_count()) + ' devices')
torch.cuda.manual_seed(args.seed)
else:
io.cprint('Using CPU')
if not args.eval:
train(args, io)