-
Notifications
You must be signed in to change notification settings - Fork 8
/
preprocess_for_diagnosis.py
280 lines (256 loc) · 12.3 KB
/
preprocess_for_diagnosis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
from scipy.io import loadmat
import numpy as np
import shutil
import os
from sklearn import preprocessing # 0-1编码
from sklearn.model_selection import StratifiedShuffleSplit # 随机划分,保证每一类比例相同
import random
from imblearn.over_sampling import SMOTE, ADASYN, RandomOverSampler
import tensorflow as tf
def prepro(d_path, gan_data=None, length=896, number=1000, normalization='minmax',
rate=[0.5, 0.25, 0.25], sampling='order', over_sampling='none', imbalance_ratio=10):
"""对数据进行预处理,返回train_X, train_Y, valid_X, valid_Y, test_X, test_Y样本.
:param d_path: 源数据地址
:param gan_data: 是否采用gan生成的数据作为数据源, 默认为none, 若over_sampling='GAN', 应为存放gan数据的文件夹
:param length: 信号长度,默认约2个信号周期,896
:param number: 每种信号个数,总共10类,默认每个类别 1000 个数据
:param normalization: 数据变换方式: 最大最小值归一化'minmax', 均值归一化'mean', 归一化为0-1之间'0-1'
:param rate: 训练集/验证集/测试集比例.默认[0.5,0.25,0.25],相加要等于1
:param sampling: 训练数据的采样方式. 顺序采样'order', 随机采样'random', 重叠采样'enc'
:param imbalance_ratio: 某一种大类数据与小类数据的比例,默认为10:1
:param over_sampling: 是否扩增小类数据,可选方案为'GAN', 'SMOTE', 'ADASYN', 'RANDOM', 'sampling_method'. 默认'none'
:return: Train_X, Train_Y, Valid_X, Valid_Y, Test_X, Test_Y
```
import preprocess.preprocess_nonoise as pre
train_X, train_Y, valid_X, valid_Y, test_X, test_Y = pre.prepro(d_path,
gan_data=None,
length=896,
number=1000,
normalization='minmax',
rate=[0.5, 0.25, 0.25],
sampling = 'order',
over_sampling = False,
imbalance_ratio = 10
)
```
"""
def capture(original_path):
"""读取mat文件,返回字典
:param original_path: 读取路径
:return: 数据字典
"""
files = {}
for i in filenames:
# 文件路径
file_path = os.path.join(original_path, i)
file = loadmat(file_path)
file_keys = file.keys()
for key in file_keys:
if 'DE' in key:
files[i] = file[key].ravel()
return files
def cap():
get_files = os.listdir(d_path)
for g in get_files:
if 'B007' in g.title():
shutil.copy(d_path + g, gan_data)
if 'Or021' in g.title():
shutil.copy(d_path + g, gan_data)
def slice_sampling(data, slice_rate=rate[1] + rate[2]):
"""将数据切分为前面多少比例,后面多少比例, 并采样.
:param data: 单条数据
:param slice_rate: 验证集以及测试集所占的比例
:return: 切分好的数据
"""
keys = data.keys()
Train_Samples = {}
Test_Samples = {}
majority_key = 'normal' # 大类样本关键字
ratio = imbalance_ratio # 大类数据和小类数据的不平衡比
for key in keys:
slice_data = data[key]
all_lenght = len(slice_data)
if majority_key in key:
end_index = int(all_lenght * (1 - slice_rate))
samp_train = int(number * (1 - slice_rate))
elif over_sampling == 'sampling_method':
end_index = int(all_lenght * (1 - slice_rate) // ratio + 2 * length)
samp_train = int(number * (1 - slice_rate))
else:
end_index = int(all_lenght * (1 - slice_rate) // ratio + 2 * length)
samp_train = int(number * (1 - slice_rate) // ratio)
Train_sample = []
Test_sample = []
if sampling == 'enc':
enc_time = length // enc_step
samp_step = 0 # 用来计数Train采样次数
for j in range(samp_train):
random_start = np.random.randint(low=0, high=(end_index - 2 * length))
label = 0
for h in range(enc_time):
samp_step += 1
random_start += enc_step
sample = slice_data[random_start: random_start + length]
Train_sample.append(sample)
if samp_step == samp_train:
label = 1
break
if label:
break
elif sampling == 'random':
for j in range(samp_train):
random_start = np.random.randint(low=0, high=(end_index - length))
sample = slice_data[random_start:random_start + length]
Train_sample.append(sample)
elif sampling == 'order':
samp_step = 0 # 用来计数Train采样次数
step_num = 0
step = max(int((end_index - length) // samp_train), 1)
for j in range(samp_train):
order_start = int(step_num * step)
step_num += 1
if order_start > length:
order_start = 0
step_num = 0
time = (end_index - order_start) // length
label = 0
for h in range(time):
samp_step += 1
sample = slice_data[order_start:order_start + length]
order_start += length
Train_sample.append(sample)
if samp_step == samp_train:
label = 1
break
if label:
break
else:
print("please make sampling = 'enc', 'random' or 'order'")
# 抓取测试数据
for h in range(number - int(number * (1 - slice_rate))):
random_start = np.random.randint(low=end_index, high=(all_lenght - length))
sample = slice_data[random_start:random_start + length]
Test_sample.append(sample)
if normalization == 'minmax':
for i in range(np.size(Train_sample, 0)):
Train_sample[i] = 2 * (Train_sample[i] - min(Train_sample[i])) / (
max(Train_sample[i]) - min(Train_sample[i])) - 1
for i in range(np.size(Test_sample, 0)):
Test_sample[i] = 2 * (Test_sample[i] - min(Test_sample[i])) / (
max(Test_sample[i]) - min(Test_sample[i])) - 1
elif normalization == 'mean':
for i in range(np.size(Train_sample, 0)):
Train_sample[i] = (Train_sample[i] - np.mean(Train_sample[i])) / (
max(Train_sample[i]) - min(Train_sample[i]))
for i in range(np.size(Test_sample, 0)):
Test_sample[i] = (Test_sample[i] - np.mean(Test_sample[i])) / (
max(Test_sample[i]) - min(Test_sample[i]))
elif normalization == '0-1':
for i in range(np.size(Train_sample, 0)):
Train_sample[i] = (Train_sample[i] - min(Train_sample[i])) / (
max(Train_sample[i]) - min(Train_sample[i]))
for i in range(np.size(Test_sample, 0)):
Test_sample[i] = (Test_sample[i] - min(Test_sample[i])) / (
max(Test_sample[i]) - min(Test_sample[i]))
Train_Samples[key] = Train_sample
Test_Samples[key] = Test_sample
return Train_Samples, Test_Samples
# 仅抽样完成,打标签
def add_labels(train_test):
X = []
Y = []
label = 0
for i in filenames:
x = train_test[i]
X += x
lenx = len(x)
Y += [label] * lenx
label += 1
return X, Y
# one-hot编码
def one_hot(Train_Y, Test_Y):
Train_Y = np.array(Train_Y).reshape([-1, 1])
Test_Y = np.array(Test_Y).reshape([-1, 1])
Encoder = preprocessing.OneHotEncoder()
Encoder.fit(Train_Y)
Train_Y = Encoder.transform(Train_Y).toarray()
Test_Y = Encoder.transform(Test_Y).toarray()
Test_Y = np.asarray(Test_Y, dtype=np.int32)
Train_Y = np.asarray(Train_Y, dtype=np.int32)
return Train_Y, Test_Y
def valid_test_slice(Test_X, Test_Y):
test_size = rate[2] / (rate[1] + rate[2])
ss = StratifiedShuffleSplit(n_splits=1, test_size=test_size)
for train_index, test_index in ss.split(Test_X, Test_Y):
X_valid, X_test = Test_X[train_index], Test_X[test_index]
Y_valid, Y_test = Test_Y[train_index], Test_Y[test_index]
return X_valid, Y_valid, X_test, Y_test
def pre_gandata(gan_data, d_num):
"""
处理生成的数据, 加标签
"""
minor_filenames = os.listdir(gan_data)
print("minor_filenames:", minor_filenames)
G_data = {}
for i in minor_filenames:
# 文件路径
file_path = os.path.join(gan_data, i)
file = loadmat(file_path)
file_keys = file.keys()
for key in file_keys:
if 'DE' in key:
slice_file = file[key]
leng = list(range(slice_file.shape[0]))
random.shuffle(leng)
index = leng[0:d_num]
G_data[i] = slice_file[index, 0:896].reshape([-1, 896])
return G_data
def data_standardization(Train_X, Test_X):
# 用训练集标准差标准化训练集以及测试集
scalar = preprocessing.StandardScaler().fit(Train_X)
Train_X = scalar.transform(Train_X)
Test_X = scalar.transform(Test_X)
return Train_X, Test_X
enc_step = 28
# 获得该文件夹下所有.mat文件名
filenames = os.listdir(d_path)
filenames = [i for i in filenames if '.mat' in i]
# 从.mat文件中读取出数据的字典
data = capture(original_path=d_path)
# 将数据切分为训练集、测试集
train, test = slice_sampling(data)
# if normalization:
# Train_X, Test_X = data_standardization(Train_X, Test_X)
if over_sampling == 'GAN': # 将GAN生成的数据加入到 train
if gan_data:
smaple_num = int(number * rate[0] * (1 - 1 / imbalance_ratio))
G_data = pre_gandata(gan_data, smaple_num)
file_keys = G_data.keys()
for k in file_keys:
for n in range(G_data[k].shape[0]):
array_G = G_data[k]
train[k].append(array_G[n, :])
# 为训练集制作标签,返回X,Y
Train_X, Train_Y = add_labels(train)
if over_sampling == 'SMOTE':
oversample = SMOTE(k_neighbors=2)
Train_X, Train_Y = oversample.fit_resample(Train_X, Train_Y)
elif over_sampling == 'ADASYN':
oversample = ADASYN(n_neighbors=3)
Train_X, Train_Y = oversample.fit_resample(Train_X, Train_Y)
elif over_sampling == 'RANDOM':
oversample = RandomOverSampler()
Train_X, Train_Y = oversample.fit_resample(Train_X, Train_Y)
# 为测试集制作标签,返回X,Y
Test_X, Test_Y = add_labels(test)
# 为训练集Y/测试集One-hot标签
Train_Y, Test_Y = one_hot(Train_Y, Test_Y)
# 训练数据/测试数据 是否标准化.
# 需要做一个数据转换,转换成np格式.
Train_X = np.asarray(Train_X)
Test_X = np.asarray(Test_X)
# 将测试集切分为验证集合和测试集.
Valid_X, Valid_Y, Test_X, Test_Y = valid_test_slice(Test_X, Test_Y)
return Train_X, Train_Y, Valid_X, Valid_Y, Test_X, Test_Y
if __name__ == "__main__":
print("test")