-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_cifar10.py
153 lines (136 loc) · 6.84 KB
/
train_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
### basic modules
import numpy as np
import time, pickle, os, sys, json, PIL, tempfile, warnings, importlib, math, copy, shutil, setproctitle
from datetime import datetime
### torch modules
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR, MultiStepLR
import torch.nn.functional as F
import data_load
import utils
import Local_bound as Local
if __name__ == "__main__":
args = utils.argparser(epochs=800,warmup=20,rampup=400,batch_size=256,epsilon_train=0.1551)
print(datetime.now())
print(args)
print('saving file to {}'.format(args.prefix))
setproctitle.setproctitle(args.prefix)
dir, _ = os.path.split(args.prefix + '_train.log')
if not os.path.exists(dir):
os.makedirs(dir)
train_log = open(args.prefix + "_train.log", "w")
test_log = open(args.prefix + "_test.log", "w")
train_loader, test_loader = data_load.data_loaders(args.data, args.batch_size, args.test_batch_size, augmentation=args.augmentation, normalization=args.normalization, drop_last=args.drop_last, shuffle=args.shuffle)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
best_err = 1
err = 1
model = utils.select_model(args.data, args.model, args.init)
# compute the feature size at each layer
input_size = []
depth = len(model)
x = torch.randn(1,3,32,32).cuda()
for i, layer in enumerate(model.children()):
if i < depth-1:
input_size.append(x.size()[1:])
x = layer(x)
# create u on cpu to store singular vector for every input at every layer
u_train = []
u_test = []
for i in range(len(input_size)):
print(i)
if not model[i].__class__.__name__=='ReLU_x' and not model[i].__class__.__name__=='ClampGroupSort' and not model[i].__class__.__name__=='Flatten' and not isinstance(model[i], nn.ReLU):
u_train.append(torch.randn((len(train_loader.dataset), *(input_size[i])), pin_memory=True))
u_test.append(torch.randn((len(test_loader.dataset), *(input_size[i])), pin_memory=True))
else:
u_train.append(None)
u_test.append(None)
if args.opt == 'adam':
opt = optim.Adam(model.parameters(), lr=args.lr)
elif args.opt == 'sgd':
opt = optim.SGD(model.parameters(), lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
print(opt)
if args.lr_scheduler == 'step':
lr_scheduler = optim.lr_scheduler.StepLR(opt, step_size=args.step_size, gamma=args.gamma)
elif args.lr_scheduler =='multistep':
lr_scheduler = MultiStepLR(opt, milestones=args.wd_list, gamma=args.gamma)
elif (args.lr_scheduler == 'exp'):
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
opt, lr_lambda=lambda step: utils.lr_exp(args.lr, args.end_lr, step, args.epochs, args.more))
print(lr_scheduler)
eps_schedule = np.linspace(args.starting_epsilon,
args.epsilon_train,
args.schedule_length)
kappa_schedule = np.linspace(args.starting_kappa,
args.kappa,
args.kappa_schedule_length)
u_list = None
for t in range(args.epochs):
# set up epsilon and kappa scheduling
if t < args.warmup:
epsilon = 0
epsilon_next = 0
elif args.warmup <= t < args.warmup+len(eps_schedule) and args.starting_epsilon is not None:
epsilon = float(eps_schedule[t-args.warmup])
epsilon_next = float(eps_schedule[np.min((t+1-args.warmup, len(eps_schedule)-1))])
else:
epsilon = args.epsilon_train
epsilon_next = args.epsilon_train
if t < args.warmup:
kappa = 1
kappa_next = 1
elif args.warmup <= t < args.warmup+len(kappa_schedule):
kappa = float(kappa_schedule[t-args.warmup])
kappa_next = float(kappa_schedule[np.min((t+1-args.warmup, len(kappa_schedule)-1))])
else:
kappa = args.kappa
kappa_next = args.kappa
print('%.f th epoch: epsilon: %.7f - %.7f, kappa: %.4f - %.4f, lr: %.7f'%(t,epsilon,epsilon_next,kappa,kappa_next,opt.state_dict()['param_groups'][0]['lr']))
# begin training
if t < args.warmup:
utils.train(train_loader, model, opt, t, train_log, args.verbose)
_ = utils.evaluate(test_loader, model, t, test_log, args.verbose)
elif args.warmup <= t:
st = time.time()
u_list, u_train, robust_losses_train, robust_errors_train, losses_train, errors_train = Local.train(train_loader, model, opt, epsilon, kappa, t, train_log, args.verbose, args, u_list, u_train)
print('Taken', time.time()-st, 's/epoch')
u_test, err, robust_losses_test, losses_test, errors_test = Local.evaluate(test_loader, model, epsilon_next, t, test_log, args.verbose, args, u_list, u_test)
if args.lr_scheduler == 'step':
if max(t - (args.rampup + args.warmup - 1) + 1, 0):
print("LR DECAY STEP")
lr_scheduler.step(epoch=max(t - (args.rampup + args.warmup - 1) + 1, 0))
elif args.lr_scheduler =='multistep' or args.lr_scheduler =='exp':
print("LR DECAY STEP")
lr_scheduler.step()
else:
raise ValueError("Wrong LR scheduler")
# Save the best model after epsilon has been the largest
if t>=args.warmup+len(eps_schedule):
if err < best_err and args.save:
print('Best Error Found! %.3f'%err)
best_err = err
torch.save({
'state_dict' : model.state_dict(),
'err' : best_err,
'epoch' : t
}, args.prefix + "_best.pth")
torch.save({
'state_dict': model.state_dict(),
'err' : err,
'epoch' : t
}, args.prefix + "_checkpoint.pth")
args.print = True
trained = torch.load(args.prefix + "_best.pth")['state_dict']
model_eval = utils.select_model(args.data, args.model, args.init)
model_eval.load_state_dict(trained)
print('std testing ...')
std_err = utils.evaluate(test_loader, model_eval, t, test_log, args.verbose)
print('pgd testing ...')
pgd_err = utils.evaluate_pgd(test_loader, model_eval, args)
print('verification testing ...')
u_test, last_err, robust_losses_test, losses_test, errors_test = Local.evaluate(test_loader, model_eval, args.epsilon, t, test_log, args.verbose, args, u_list, u_test)
print('Best model evaluation:', std_err.item(), pgd_err.item(), last_err.item())