-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrain.py
143 lines (114 loc) · 4.82 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import enum
import torch
from torch import nn
from torch.optim.lr_scheduler import LambdaLR
import pickle
import numpy as np
import time
from model import CBOW_Model, SkipGram_Model
def get_lr_scheduler(optimizer, total_epochs: int, verbose: bool = True):
"""
Scheduler to linearly decrease learning rate,
so thatlearning rate after the last epoch is 0.
"""
lr_lambda = lambda epoch: (total_epochs - epoch) / total_epochs
lr_scheduler = LambdaLR(optimizer, lr_lambda=lr_lambda, verbose=verbose)
return lr_scheduler
def split_data_modify(pair):
dataX = []
dataY = []
for data in pair:
dataX.append(data[0])
dataY.append(data[1])
data_X = torch.from_numpy(np.array(dataX))
data_Y = torch.from_numpy(np.array(dataY))
return data_X, data_Y
def get_dataloader(ratio, data_X, data_Y, batch_size):
train_size = int(ratio * len(data_X))
test_size = len(data_X) - train_size
dataset = torch.utils.data.TensorDataset(data_X, data_Y)
train_data, test_data = torch.utils.data.random_split(dataset, [train_size, test_size])
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True, num_workers=8)
test_loader = torch.utils.data.DataLoader(dataset=test_data, batch_size=batch_size, shuffle=True, num_workers=8)
print("trainging data: ", len(train_data))
print("testing data: ", len(test_data))
return train_loader, test_loader
def train(model, train_loader, criterion, optimizer):
model.train()
running_loss = 0.0
train_running_correct = 0
for i, data in enumerate(train_loader):
# print(data[0])
# print(data[0].shape)
# print(type(data[0]))
inputs, labels = data[0].to(device), data[1].to(device)
# Normalize
# inputs_m, inputs_s = inputs.mean(), inputs.std()
# inputs = (inputs - inputs_m) / inputs_s
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
running_loss += loss.item()*labels.size(0)
# _, prediction = torch.max(outputs,1)
# train_running_correct += (prediction == labels).sum().item()
loss.backward()
optimizer.step()
train_loss = running_loss / len(train_loader.dataset)
# train_acc = 100. * train_running_correct/len(train_loader.dataset)
return train_loss
def testing(model, test_loader, criterion):
model.eval()
val_running_correct = 0
running_loss = 0.0
with torch.no_grad():
for i, data in enumerate(test_loader):
inputs, labels = data[0].to(device), data[1].to(device)
outputs= model(inputs)
loss = criterion(outputs, labels)
running_loss += loss.item()*labels.size(0)
# _, prediction = torch.max(outputs,1)
# val_running_correct += (prediction == labels).sum().item()
val_loss = running_loss/len(test_loader.dataset)
# acc = 100. * val_running_correct/len(test_loader.dataset)
return val_loss
with open('./file/word2idx.pickle','rb') as file:
word2idx = pickle.load(file)
with open('./file/pairword.pickle','rb') as file:
pair = pickle.load(file)
print(len(word2idx))
LR = 1e-4
BATCH_SIZE = 512
EPOCH = 200
ratio = 0.8
MODEL_NAME = 'Model_SkipGram'
skip_gram = SkipGram_Model(vocab_size = len(word2idx), embedding_dim = 600).cuda()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(skip_gram.parameters(), lr=LR)
# lr_scheduler = get_lr_scheduler(optimizer, epoch = EPOCH, verbose=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
data_X, data_Y = split_data_modify(pair)
train_loader, test_loader = get_dataloader(ratio, data_X, data_Y, BATCH_SIZE)
recoder = []
epochs, Train_losses, Train_accs, Test_losses, Test_accs = [], [], [], [], []
Best_loss = 100
for epoch in range(EPOCH):
epoch_start_time = time.time()
Train_loss = train(skip_gram, train_loader, criterion, optimizer)
Test_loss = testing(skip_gram, test_loader, criterion)
epoch_secs = int(time.time() - epoch_start_time)
recoder.append([epoch, Train_loss, Test_loss])
epochs.append(epoch)
Train_losses.append(Train_loss)
Test_losses.append(Test_loss)
print(f'Epoch:{epoch}| Train loss :{Train_loss:.4f}| Test loss:{Test_loss:.4f}| Time:{epoch_secs}s')
"""Save Model"""
if Test_loss < Best_loss:
Best_loss = Test_loss
torch.save(skip_gram.state_dict() , './model/SkipGram_lemma' + '_' + str(epoch) + '.pt')
""" Dump recorder """
with open('SkipGram_lemma.csv', 'a') as f:
f.write(f'Epoch:{epoch}| Train loss :{Train_loss:.4f}| Test loss:{Test_loss:.4f}|Time:{epoch_secs}s\n')
with open('./SkipGram_lemma.pickle', 'wb') as file:
pickle.dump(epochs, file)
pickle.dump(Train_losses, file)
pickle.dump(Test_losses, file)