Skip to content

Latest commit

 

History

History
62 lines (20 loc) · 940 Bytes

Normalizing flow.md

File metadata and controls

62 lines (20 loc) · 940 Bytes

Normalizing flow

需要补充的知识点:

Variational inference 变分推论

ELBO(evidence lower bound)

一般我们想计算 后验概率 $p(z|x)$, 根据贝叶斯公式,$p(z|x) = \frac{p(z)p(x|z)}{p(x)}$,以及 $p(x) = \int p(x, z) \mathrm{d} z$

现在想用一族 parameterized distributions $\mathcal{D}=\left{q_{\theta}(z)\right}$ 来近似真实的后验分布

写成一个优化问题就是 $$ \theta^{}=\underset{\theta}{\arg \min } \mathrm{KL}\left(q_{\theta}(z) | p(z \mid x)\right) $$ 等价于 $$ \theta^{}=\underset{\theta}{\arg \max } \mathbb{E}{q}\left[\log p(x, z)-\log q{\theta}(z)\right] $$

posterior $p(z|x)$

Normalizing flows transform simple densities (like Gaussians) into rich complex distributions.

Change of variables, change of volume

精确推断

MAP(Maximum a posteriori estimation) 最大后验概率

Negative Log Liklihood NLL 负对数似然