-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreate_models_lenet.py
350 lines (273 loc) · 16.4 KB
/
create_models_lenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# create_models.py
# Example: python lib/create_models.py 50 hyperparam_ranges.json
import os
import datetime
from random import choice, uniform
import argparse
import json
from lib.utils import save_model_params, ensure_dir, get_conv_output_dims, get_pool_output_dims
model_params_fname = 'model_params.json'
def choose_hyperparameters_from_file(hyperparameter_ranges_file):
with open(hyperparameter_ranges_file) as f:
ranges = json.load(f)
# Load constants.
input_channel = choice(ranges['input_channel'])
output_size = ranges['output_size']
input_size = output_size / input_channel
if input_size.is_integer():
input_size = int(input_size)
else:
raise ValueError('output_size / input_channel = {} / {} = {}'.format(output_size, input_channel, input_size))
batch_norm = choice(ranges['batch_norm'])
use_pooling = choice(ranges['use_pooling'])
conv1_num_kernels = choice(list(range(*ranges['conv1_num_kernels'])))
conv1_dropout = uniform(*ranges['conv1_dropout'])
conv2_num_kernels = choice(list(range(*ranges['conv2_num_kernels'])))
conv2_dropout = uniform(*ranges['conv2_dropout'])
# Randomly choose model hyperparameters from ranges.
conv1_kernel_width_range = list(range(*ranges['conv1_kernel_width']))
conv1_stride_range = ranges['conv1_stride']
conv2_kernel_size_range = list(range(*ranges['conv2_kernel_size']))
conv2_stride_range = ranges['conv2_stride']
if use_pooling is True:
pool1_kernel_size_range = ranges['pool1_kernel_size']
pool1_stride_range = ranges['pool1_stride']
pool2_kernel_size_range = ranges['pool2_kernel_size']
pool2_stride_range = ranges['pool2_stride']
else:
pool1_kernel_size_range = [1]
pool1_stride_range = [1]
pool2_kernel_size_range = [1]
pool2_stride_range = [1]
# Size-constrained random hyperparameter search
possible_size_combinations = []
for conv1_kernel_width in conv1_kernel_width_range:
for conv1_stride in conv1_stride_range:
conv1_pad_width = 0
conv1_pad_height = 1
conv1_input_width = 65
conv1_input_height = 2
conv1_input_depth = 1
conv1_kernel_width = conv1_kernel_width
conv1_kernel_height = 2
conv1_stride_width = conv1_stride
conv1_stride_height = 1
# Satisfy conv1 condition
conv1_output_width, conv1_output_height, conv1_output_depth = get_conv_output_dims(
(conv1_input_width, conv1_input_height, conv1_input_depth),
(conv1_pad_width, conv1_pad_height),
(conv1_kernel_width, conv1_kernel_height),
(conv1_stride_width, conv1_stride_height),
conv1_num_kernels)
if conv1_output_width <= 0 or \
not conv1_output_width.is_integer() or \
conv1_output_height <= 0 or \
not conv1_output_height.is_integer():
if conv1_output_width <= 0:
print('conv1_output_width = {} < 0'.format(conv1_output_width))
if not conv1_output_width.is_integer():
print('conv1_output_width = {} is not an integer'.format(conv1_output_width))
if conv1_output_height <= 0:
print('conv1_output_height = {} < 0'.format(conv1_output_height))
if not conv1_output_height.is_integer():
print('conv1_output_height = {} is not an integer'.format(conv1_output_height))
continue
conv1_output_size = (conv1_output_width, conv1_output_height, conv1_output_depth)
print('conv1_output_size =', conv1_output_size)
# TODO: if use_pooling is True
for pool1_kernel_size in pool1_kernel_size_range:
for pool1_stride in pool1_stride_range:
pool1_input_width = conv1_output_width
pool1_input_height = conv1_output_height
pool1_input_depth = conv1_output_depth
pool1_kernel_width = pool1_kernel_size
pool1_kernel_height = 1 # NOTE We only pool length-wise
pool1_stride_width = pool1_stride
pool1_stride_height = pool1_stride # NOTE Cannot be 2 when conv1_output_height = 3
# NOTE: In practice, conv1_output_height is 3, which can't
# be coupled with a pool1 kernel of 1
pool1_output_width, pool1_output_height, pool1_output_depth = get_pool_output_dims(
(pool1_input_width, pool1_input_height, pool1_input_depth),
(pool1_kernel_width, pool1_kernel_height),
(pool1_stride_width, pool1_stride_height))
if pool1_output_width <= 0 or \
not pool1_output_width.is_integer() or \
pool1_output_height <= 0 or \
not pool1_output_height.is_integer():
# if pool1_output_width <= 0:
# print('pool1_output_width = {} < 0'.format(pool1_output_width))
# if not pool1_output_width.is_integer():
# print('type(pool1_output_width) =', type(pool1_output_width))
# print('pool1_output_width = {} is not an integer'.format(pool1_output_width))
# if pool1_output_height <= 0:
# print('pool1_output_height = {} < 0'.format(pool1_output_height))
# if not pool1_output_height.is_integer():
# print('type(pool1_output_height) =', type(pool1_output_height))
# print('pool1_output_height = {} is not an integer'.format(pool1_output_height))
continue
pool1_output_size = (pool1_output_width, pool1_output_height, pool1_output_depth)
# print('pool1_output_size =', pool1_output_size)
for conv2_kernel_size in conv2_kernel_size_range:
for conv2_stride in conv2_stride_range:
conv2_pad_width = 0
conv2_pad_height = 0
conv2_input_width = 65
conv2_input_height = 2
conv2_input_depth = pool1_output_depth
conv2_kernel_width = conv2_kernel_size
conv2_kernel_height = 2
conv2_stride_width = conv2_stride
conv2_stride_height = 1
conv2_output_width, conv2_output_height, conv2_output_depth = get_conv_output_dims(
(conv2_input_width, conv2_input_height, conv2_input_depth),
(conv2_pad_width, conv2_pad_height),
(conv2_kernel_width, conv2_kernel_height),
(conv2_stride_width, conv2_stride_height),
conv2_num_kernels)
if conv2_output_width <= 0 or \
not conv2_output_width.is_integer() or \
conv2_output_height <= 0 or \
not conv2_output_height.is_integer():
# if conv2_output_width <= 0:
# print('conv2_output_width = {} < 0'.format(conv2_output_width))
# if not conv2_output_width.is_integer():
# print('type(conv2_output_width) =', type(conv2_output_width))
# print('conv2_output_width = {} is not an integer'.format(conv2_output_width))
# if conv2_output_height <= 0:
# print('conv2_output_height = {} < 0'.format(conv2_output_height))
# if not conv2_output_height.is_integer():
# print('type(conv2_output_height) =', type(conv2_output_height))
# print('conv2_output_height = {} is not an integer'.format(conv2_output_height))
continue
conv2_output_size = (conv2_output_width, conv2_output_height, conv2_output_depth)
# print('conv2_output_size =', conv2_output_size)
for pool2_kernel_size in pool2_kernel_size_range:
for pool2_stride in pool2_stride_range:
pool2_input_width = conv2_output_width
pool2_input_height = conv2_output_height
pool2_input_depth = conv2_output_depth
pool2_kernel_width = pool2_kernel_size
pool2_kernel_height = 1
pool2_stride_width = pool2_stride
pool2_stride_height = pool2_stride
pool2_output_width, pool2_output_height, pool2_output_depth = get_pool_output_dims(
(pool2_input_width, pool2_input_height, pool2_input_depth),
(pool2_kernel_width, pool2_kernel_height),
(pool2_stride_width, pool2_stride_height))
if pool2_output_width <= 0 or \
not pool2_output_width.is_integer() or \
pool2_output_height <= 0 or \
not pool2_output_height.is_integer():
# if pool2_output_width <= 0:
# print('pool2_output_width = {} <= 0'.format(pool2_output_width))
# if not pool2_output_width.is_integer():
# print('type(pool2_output_width) =', type(pool2_output_width))
# print('pool2_output_width = {} is not an integer'.format(pool2_output_width))
# if pool2_output_height <= 0:
# print('pool2_output_height = {} <= 0'.format(pool2_output_height))
# if not pool2_output_height.is_integer():
# print('type(pool2_output_height) =', type(pool2_output_height))
# print('pool2_output_height = {} is not an integer'.format(pool2_output_height))
continue
pool2_output_size = (pool2_output_width, pool2_output_height, pool2_output_depth)
# print('pool2_output_size =', pool2_output_size)
possible_size_combinations.append((conv1_kernel_width, conv1_stride, pool1_kernel_size, pool1_stride, conv2_kernel_size, conv2_stride, pool2_kernel_size, pool2_stride))
if len(possible_size_combinations) == 0:
raise ValueError('{fname}: no possible combination for pool1 given conv1_output_size = {conv1_output_size}; pool1_kernel_size_ranges = {pool1_kernel_size_range}; pool1_stride_ranges = {pool1_stride_range}'.format(fname=__name__, conv1_output_size=conv1_output_size, pool1_kernel_size_range=pool1_kernel_size_range, pool1_stride_range=pool1_stride_range))
conv1_kernel_width, conv1_stride, pool1_kernel_size, pool1_stride, conv2_kernel_size, conv2_stride, pool2_kernel_size, pool2_stride = choice(possible_size_combinations)
# print('create_models: ranges[\'fcs_hidden_size\'] =', ranges['fcs_hidden_size'])
# print('create_models: list(range(*ranges[\'fcs_hidden_size\'])) =', list(range(*ranges['fcs_hidden_size'])))
fcs_hidden_size = choice(list(range(*ranges['fcs_hidden_size'])))
fcs_num_hidden_layers = choice(list(range(*ranges['fcs_num_hidden_layers'])))
fcs_dropout = uniform(*ranges['fcs_dropout'])
# Randomly choose training hyperparameters from ranges.
cost_function = choice(ranges['cost_function'])
optimizer = choice(ranges['optimizer'])
# learning_rate = None
if optimizer == 'SGD':
momentum = uniform(*ranges['momentum'])
learning_rate = uniform(*ranges['learning_rate_sgd'])
elif optimizer == 'Adam':
momentum = None
learning_rate = uniform(*ranges['learning_rate_adam'])
else:
raise ValueError('{}.choose_hyperparameters_from_file: optimizer can only be \'SGD\' or \'Adam\'. Got {}'.format(__name__, optimizer))
print('outside if: learning_rate =', learning_rate)
hyperparameters = {
'input_channel': input_channel,
'output_size': output_size,
'batch_norm': batch_norm,
'use_pooling': use_pooling,
'pooling_method': ranges['pooling_method'],
'conv1_kernel_width': conv1_kernel_width,
'conv1_num_kernels': conv1_num_kernels,
'conv1_stride': conv1_stride,
'conv1_dropout': conv1_dropout,
'pool1_kernel_size': pool1_kernel_size,
'pool1_stride': pool1_stride,
'conv2_kernel_size': conv2_kernel_size,
'conv2_num_kernels': conv2_num_kernels,
'conv2_stride': conv2_stride,
'conv2_dropout': conv2_dropout,
'pool2_kernel_size': pool2_kernel_size,
'pool2_stride': pool2_stride,
'fcs_hidden_size': fcs_hidden_size,
'fcs_num_hidden_layers': fcs_num_hidden_layers,
'fcs_dropout': fcs_dropout,
'cost_function': cost_function,
'optimizer': optimizer,
'learning_rate': learning_rate,
'momentum': momentum,
}
return hyperparameters
def create_models(num_networks, hyperparameter_ranges_file):
identifier = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
data_is_target_list = [0]
num_scat_list = [1, 2, 3]
batch_size_list = [32]
# data_noise_gaussian_list = [0, 1]
data_noise_gaussian_list = [1] # Decided on 11/22/2018 b/c better models
#dropout_input_list = [0, 0.1, 0.2]
#dropout_list = [0, 0.1, 0.2, 0.3, 0.4, 0.5]
weight_decay_list = [0]
for count in range(num_networks):
data_is_target = choice(data_is_target_list)
n_scat = choice(num_scat_list)
bs = choice(batch_size_list)
data_noise_gaussian = choice(data_noise_gaussian_list)
#dropout_input = choice(dropout_input_list)
weight_decay = choice(weight_decay_list)
# get params
model_params = choose_hyperparameters_from_file(hyperparameter_ranges_file)
# set other params
model_params['data_is_target'] = data_is_target
home = os.path.expanduser('~')
model_params['data_train'] = os.path.join(home,'Downloads', '20180402_L74_70mm', 'train_' + str(n_scat) + '.h5')
model_params['data_val'] = os.path.join(home, 'Downloads', '20180402_L74_70mm', 'val_' + str(n_scat) + '.h5')
model_params['batch_size'] = bs
model_params['data_noise_gaussian'] = data_noise_gaussian
#model_params['dropout_input'] = dropout_input
model_params['weight_decay'] = weight_decay
model_params['patience'] = 20
model_params['cuda'] = 1
model_params['save_initial'] = 0
k_list = [3, 4, 5]
for k in k_list:
model_params['k'] = k
model_params['save_dir'] = os.path.join('DNNs', identifier + '_' + str(count+1) + '_created', 'k_' + str(k))
# print(model_params['save_dir'])
ensure_dir(model_params['save_dir'])
save_model_params(os.path.join(model_params['save_dir'], model_params_fname), model_params)
print('create_models: created model {}_{}'.format(identifier, count))
return identifier
def main():
# parse input arguments
parser = argparse.ArgumentParser()
parser.add_argument('num_networks', type=int, help='The number of networks to train.')
parser.add_argument('hyperparameter_ranges_file', type=str, help='The number of networks to train.')
args = parser.parse_args()
num_networks = args.num_networks
hyperparameter_ranges_file = args.hyperparameter_ranges_file
return create_models(num_networks, hyperparameter_ranges_file)
if __name__ == '__main__':
main()