-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate_keras.py
87 lines (70 loc) · 3.49 KB
/
evaluate_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# evaluate_models.py
# Description:
# Runs all models prefixed by an identifier on simulated cyst, phantom cyst,
# and in vivo data.
# Usage:
# python evaluate_models.py 123984*
# python evaluate_models.py
from glob import glob as glob_glob
from os.path import join as os_path_join, \
basename as os_path_basename, \
dirname as os_path_dirname
import argparse
from shutil import move as shutil_move
from time import time as time_time
from logging import basicConfig as logging_basicConfig, \
DEBUG as logging_DEBUG, \
INFO as logging_INFO, \
getLogger as logging_getLogger
from lib.process_single_scan_battery_keras import process_single_scan_battery_keras
from lib.utils import copy_anything
# SCAN_BATTERIES_TARGETS_GLOB_STRING = 'data/BEAM_Reverb_20181004_L74_70mm/target_*_SCR_*_0dB'
# SCAN_BATTERIES_DIRNAME = 'data/BEAM_Reverb_20181004_L74_70mm_selected'
SCAN_BATTERIES_DIRNAME = 'scan_batteries'
MODEL_SAVE_FNAME = 'model.joblib'
MODELS_DIRNAME = 'DNNs'
SCRIPT_FNAME = os_path_basename(__file__)
PROJECT_DIRNAME = os_path_dirname(__file__)
LIB_DIRNAME = os_path_join(PROJECT_DIRNAME, 'lib')
def evaluate_one_model_keras(model_dirpath):
# rename _trained as _evaluating
new_folder_name = model_dirpath.replace('_trained', '_evaluating')
shutil_move(model_dirpath, new_folder_name)
model_name = os_path_basename(new_folder_name)
copied_scan_battery_dirname = os_path_join(new_folder_name, os_path_basename(SCAN_BATTERIES_DIRNAME))
copy_anything(SCAN_BATTERIES_DIRNAME, copied_scan_battery_dirname)
time_start = time_time()
# with Pool() as pool:
# list(pool.imap_unordered(process_single_target, target_dirnames))
for scan_battery_dirname in glob_glob(os_path_join(SCAN_BATTERIES_DIRNAME, '*')):
process_single_scan_battery_keras(new_folder_name, scan_battery_dirname)
print('{}: it took {:.2f} to evaluate model {} for all scan batteries'.format(SCRIPT_FNAME, time_time() - time_start, model_name))
shutil_move(new_folder_name, new_folder_name.replace('_evaluating', '_evaluated'))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('identifier', type=str, default="x", help='Option to load model params from a file. Values in this file take precedence.')
parser.add_argument('max_to_evaluate', type=int, nargs='?', default=-1, help='The maximum number of models to evaluate, regardless of how many matched folders.')
parser.add_argument('-v', '--verbose', help='incrase output verbosity', action='store_true')
args = parser.parse_args()
identifier = args.identifier
max_to_evaluate = args.max_to_evaluate
verbose = args.verbose
logger = logging_getLogger('evaluate_keras')
if verbose:
logger.setLevel(logging_DEBUG)
else:
logger.setLevel(logging_INFO)
model_search_path = os_path_join(MODELS_DIRNAME, str(identifier) + '_trained')
models = glob_glob(model_search_path)
num_models = len(models)
if num_models == 0:
raise ValueError('evaluate_models: given identifier ' + str(identifier) + ' , expanded to ' + str(model_search_path) + ' matched no model.')
if max_to_evaluate > -1:
count = 0
# Process each model
for model_index, model_folder in enumerate(models):
if max_to_evaluate > -1 and count >= max_to_evaluate:
break
evaluate_one_model_keras(model_folder)
if max_to_evaluate > -1:
count += 1