-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet.py
40 lines (34 loc) · 1.1 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
import torch.nn as nn
from parts import *
class UNet(nn.Module):
def __init__(self, n_channels, n_classes, bilinear=False):
super(UNet, self).__init__()
self.inconv = double_conv(n_channels, 64)
self.down1 = down(64, 128)
self.down2 = down(128, 256)
self.down3 = down(256, 512)
self.down4 = down(512, 512)
self.up1 = up(512, 256, bilinear)
self.up2 = up(256, 128, bilinear)
self.up3 = up(128, 64, bilinear)
self.up4 = up(64, 64, bilinear)
self.outconv = outconv(64, n_classes)
self.init()
def forward(self, x):
x1 = self.inconv(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x4, x5)
x = self.up2(x3, x)
x = self.up3(x2, x)
x = self.up4(x1, x)
x = self.outconv(x)
return torch.sigmoid(x)
def init(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0, std=0.1)
m.bias.data.zero_()