@@ -78,7 +78,7 @@ def normal_dist(loc: float = None, scale: float = None
78
78
79
79
Assign custom prior to kernel lengthscale during GP model initialization
80
80
81
- >>> model = gpax.ExactGP(input_dim, kernel, lengthscale_prior_dist=gpax.utils .normal_dist(5, 1))
81
+ >>> model = gpax.ExactGP(input_dim, kernel, lengthscale_prior_dist=gpax.priors .normal_dist(5, 1))
82
82
83
83
Train as usual
84
84
@@ -99,7 +99,7 @@ def lognormal_dist(loc: float = None, scale: float = None) -> numpyro.distributi
99
99
100
100
Assign custom prior to kernel lengthscale during GP model initialization
101
101
102
- >>> model = gpax.ExactGP(input_dim, kernel, lengthscale_prior_dist=gpax.utils .lognormal_dist(0, 0.1))
102
+ >>> model = gpax.ExactGP(input_dim, kernel, lengthscale_prior_dist=gpax.priors .lognormal_dist(0, 0.1))
103
103
104
104
Train as usual
105
105
@@ -120,7 +120,7 @@ def halfnormal_dist(scale: float = None) -> numpyro.distributions.Distribution:
120
120
121
121
Assign custom prior to noise variance during GP model initialization
122
122
123
- >>> model = gpax.ExactGP(input_dim, kernel, noise_prior_dist=gpax.utils .halfnormal_dist(0.1))
123
+ >>> model = gpax.ExactGP(input_dim, kernel, noise_prior_dist=gpax.priors .halfnormal_dist(0.1))
124
124
125
125
Train as usual
126
126
@@ -144,7 +144,7 @@ def gamma_dist(c: float = None,
144
144
145
145
Assign custom prior to kernel lengthscale during GP model initialization
146
146
147
- >>> model = gpax.ExactGP(input_dm, kernel, lengthscale_prior_dist=gpax.utils .gamma_dist(2, 5))
147
+ >>> model = gpax.ExactGP(input_dm, kernel, lengthscale_prior_dist=gpax.priors .gamma_dist(2, 5))
148
148
149
149
Train as usual
150
150
0 commit comments