forked from mozilla/DeepSpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeepSpeech.py
1287 lines (1008 loc) · 51.8 KB
/
DeepSpeech.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import datetime
import json
import numpy as np
import os
import shutil
import subprocess
import sys
import tempfile
import tensorflow as tf
import time
from collections import OrderedDict
from math import ceil
from tensorflow.contrib.session_bundle import exporter
from tensorflow.python.tools import freeze_graph
from util.gpu import get_available_gpus
from util.log import merge_logs
from util.spell import correction
from util.shared_lib import check_cupti
from util.text import sparse_tensor_value_to_texts, wer
from xdg import BaseDirectory as xdg
ds_importer = os.environ.get('ds_importer', 'ldc93s1')
ds_dataset_path = os.environ.get('ds_dataset_path', os.path.join('./data', ds_importer))
import importlib
ds_importer_module = importlib.import_module('util.importers.%s' % ds_importer)
from util.website import maybe_publish
do_fulltrace = bool(len(os.environ.get('ds_do_fulltrace', '')))
if do_fulltrace:
check_cupti()
# Global Constants
# ================
# The number of iterations (epochs) we will train for
epochs = int(os.environ.get('ds_epochs', 75))
# Whether to use GPU bound Warp-CTC
use_warpctc = bool(len(os.environ.get('ds_use_warpctc', '')))
# As we will employ dropout on the feedforward layers of the network,
# we need to define a parameter `dropout_rate` that keeps track of the dropout rate for these layers
dropout_rate = float(os.environ.get('ds_dropout_rate', 0.05)) # TODO: Validate this is a reasonable value
# We allow for customisation of dropout per-layer
dropout_rate2 = float(os.environ.get('ds_dropout_rate2', dropout_rate))
dropout_rate3 = float(os.environ.get('ds_dropout_rate3', dropout_rate))
dropout_rate4 = float(os.environ.get('ds_dropout_rate4', 0.0))
dropout_rate5 = float(os.environ.get('ds_dropout_rate5', 0.0))
dropout_rate6 = float(os.environ.get('ds_dropout_rate6', dropout_rate))
dropout_rates = [ dropout_rate,
dropout_rate2,
dropout_rate3,
dropout_rate4,
dropout_rate5,
dropout_rate6 ]
no_dropout = [ 0.0 ] * 6
# One more constant required of the non-recurrant layers is the clipping value of the ReLU.
relu_clip = int(os.environ.get('ds_relu_clip', 20)) # TODO: Validate this is a reasonable value
# Adam optimizer (http://arxiv.org/abs/1412.6980) parameters
# Beta 1 parameter
beta1 = float(os.environ.get('ds_beta1', 0.9)) # TODO: Determine a reasonable value for this
# Beta 2 parameter
beta2 = float(os.environ.get('ds_beta2', 0.999)) # TODO: Determine a reasonable value for this
# Epsilon parameter
epsilon = float(os.environ.get('ds_epsilon', 1e-8)) # TODO: Determine a reasonable value for this
# Learning rate parameter
learning_rate = float(os.environ.get('ds_learning_rate', 0.001))
# Batch sizes
# The number of elements in a training batch
train_batch_size = int(os.environ.get('ds_train_batch_size', 1))
# The number of elements in a dev batch
dev_batch_size = int(os.environ.get('ds_dev_batch_size', 1))
# The number of elements in a test batch
test_batch_size = int(os.environ.get('ds_test_batch_size', 1))
# Sample limits
# The maximum amount of samples taken from (the beginning of) the train set - 0 meaning no limit
limit_train = int(os.environ.get('ds_limit_train', 0))
# The maximum amount of samples taken from (the beginning of) the validation set - 0 meaning no limit
limit_dev = int(os.environ.get('ds_limit_dev', 0))
# The maximum amount of samples taken from (the beginning of) the test set - 0 meaning no limit
limit_test = int(os.environ.get('ds_limit_test', 0))
# Step widths
# The number of epochs we cycle through before displaying progress
display_step = int(os.environ.get('ds_display_step', 1))
# The number of epochs we cycle through before checkpointing the model
checkpoint_step = int(os.environ.get('ds_checkpoint_step', 5))
# The number of epochs we cycle through before validating the model
validation_step = int(os.environ.get('ds_validation_step', 0))
# Checkpointing
# The directory in which checkpoints are stored
checkpoint_dir = os.environ.get('ds_checkpoint_dir', xdg.save_data_path('deepspeech'))
# Whether to resume from checkpoints when training
restore_checkpoint = bool(int(os.environ.get('ds_restore_checkpoint', 0)))
# The directory in which exported models are stored
export_dir = os.environ.get('ds_export_dir', None)
# The version number of the exported model
export_version = 1
# Whether to remove old exported models
remove_export = bool(int(os.environ.get('ds_remove_export', 0)))
# Reporting
# The number of phrases to print out during a WER report
report_count = int(os.environ.get('ds_report_count', 10))
# Whether to log device placement of the operators to the console
log_device_placement = bool(int(os.environ.get('ds_log_device_placement', 0)))
# Whether to log gradients and variables summaries to TensorBoard during training.
# This incurs a performance hit, so should generally only be enabled for debugging.
log_variables = bool(len(os.environ.get('ds_log_variables', '')))
# Geometry
# The layer width to use when initialising layers
n_hidden = int(os.environ.get('ds_n_hidden', 2048))
# Initialization
# The default random seed that is used to initialize variables. Ensures reproducibility.
random_seed = int(os.environ.get('ds_random_seed', 4567)) # To be adjusted in case of bad luck
# The default standard deviation to use when initialising weights and biases
default_stddev = float(os.environ.get('ds_default_stddev', 0.046875))
# Individual standard deviations to use when initialising particular weights and biases
for var in ['b1', 'h1', 'b2', 'h2', 'b3', 'h3', 'b5', 'h5', 'b6', 'h6']:
locals()['%s_stddev' % var] = float(os.environ.get('ds_%s_stddev' % var, default_stddev))
# Session settings
# Standard session configuration that'll be used for all new sessions.
session_config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=log_device_placement)
# Geometric Constants
# ===================
# For an explanation of the meaning of the geometric constants, please refer to
# doc/Geometry.md
# Number of MFCC features
n_input = 26 # TODO: Determine this programatically from the sample rate
# The number of frames in the context
n_context = 9 # TODO: Determine the optimal value using a validation data set
# Number of units in hidden layers
n_hidden_1 = n_hidden
n_hidden_2 = n_hidden
n_hidden_5 = n_hidden
# LSTM cell state dimension
n_cell_dim = n_hidden
# The number of units in the third layer, which feeds in to the LSTM
n_hidden_3 = 2 * n_cell_dim
# The number of characters in the target language plus one
n_character = 29 # TODO: Determine if this should be extended with other punctuation
# The number of units in the sixth layer
n_hidden_6 = n_character
# Graph Creation
# ==============
def variable_on_cpu(name, shape, initializer):
r"""
Next we concern ourselves with graph creation.
However, before we do so we must introduce a utility function ``variable_on_cpu()``
used to create a variable in CPU memory.
"""
# Use the /cpu:0 device for scoped operations
with tf.device('/cpu:0'):
# Create or get apropos variable
var = tf.get_variable(name=name, shape=shape, initializer=initializer)
return var
def BiRNN(batch_x, seq_length, dropout):
r"""
That done, we will define the learned variables, the weights and biases,
within the method ``BiRNN()`` which also constructs the neural network.
The variables named ``hn``, where ``n`` is an integer, hold the learned weight variables.
The variables named ``bn``, where ``n`` is an integer, hold the learned bias variables.
In particular, the first variable ``h1`` holds the learned weight matrix that
converts an input vector of dimension ``n_input + 2*n_input*n_context``
to a vector of dimension ``n_hidden_1``.
Similarly, the second variable ``h2`` holds the weight matrix converting
an input vector of dimension ``n_hidden_1`` to one of dimension ``n_hidden_2``.
The variables ``h3``, ``h5``, and ``h6`` are similar.
Likewise, the biases, ``b1``, ``b2``..., hold the biases for the various layers.
"""
# Input shape: [batch_size, n_steps, n_input + 2*n_input*n_context]
batch_x_shape = tf.shape(batch_x)
# Reshaping `batch_x` to a tensor with shape `[n_steps*batch_size, n_input + 2*n_input*n_context]`.
# This is done to prepare the batch for input into the first layer which expects a tensor of rank `2`.
# Permute n_steps and batch_size
batch_x = tf.transpose(batch_x, [1, 0, 2])
# Reshape to prepare input for first layer
batch_x = tf.reshape(batch_x, [-1, n_input + 2*n_input*n_context]) # (n_steps*batch_size, n_input + 2*n_input*n_context)
# The next three blocks will pass `batch_x` through three hidden layers with
# clipped RELU activation and dropout.
# 1st layer
b1 = variable_on_cpu('b1', [n_hidden_1], tf.random_normal_initializer(stddev=b1_stddev))
h1 = variable_on_cpu('h1', [n_input + 2*n_input*n_context, n_hidden_1], tf.random_normal_initializer(stddev=h1_stddev))
layer_1 = tf.minimum(tf.nn.relu(tf.add(tf.matmul(batch_x, h1), b1)), relu_clip)
layer_1 = tf.nn.dropout(layer_1, (1.0 - dropout[0]))
# 2nd layer
b2 = variable_on_cpu('b2', [n_hidden_2], tf.random_normal_initializer(stddev=b2_stddev))
h2 = variable_on_cpu('h2', [n_hidden_1, n_hidden_2], tf.random_normal_initializer(stddev=h2_stddev))
layer_2 = tf.minimum(tf.nn.relu(tf.add(tf.matmul(layer_1, h2), b2)), relu_clip)
layer_2 = tf.nn.dropout(layer_2, (1.0 - dropout[1]))
# 3rd layer
b3 = variable_on_cpu('b3', [n_hidden_3], tf.random_normal_initializer(stddev=b3_stddev))
h3 = variable_on_cpu('h3', [n_hidden_2, n_hidden_3], tf.random_normal_initializer(stddev=h3_stddev))
layer_3 = tf.minimum(tf.nn.relu(tf.add(tf.matmul(layer_2, h3), b3)), relu_clip)
layer_3 = tf.nn.dropout(layer_3, (1.0 - dropout[2]))
# Now we create the forward and backward LSTM units.
# Both of which have inputs of length `n_cell_dim` and bias `1.0` for the forget gate of the LSTM.
# Forward direction cell:
lstm_fw_cell = tf.contrib.rnn.BasicLSTMCell(n_cell_dim, forget_bias=1.0, state_is_tuple=True)
lstm_fw_cell = tf.contrib.rnn.DropoutWrapper(lstm_fw_cell,
input_keep_prob=1.0 - dropout[3],
output_keep_prob=1.0 - dropout[3],
seed=random_seed)
# Backward direction cell:
lstm_bw_cell = tf.contrib.rnn.BasicLSTMCell(n_cell_dim, forget_bias=1.0, state_is_tuple=True)
lstm_bw_cell = tf.contrib.rnn.DropoutWrapper(lstm_bw_cell,
input_keep_prob=1.0 - dropout[4],
output_keep_prob=1.0 - dropout[4],
seed=random_seed)
# `layer_3` is now reshaped into `[n_steps, batch_size, 2*n_cell_dim]`,
# as the LSTM BRNN expects its input to be of shape `[max_time, batch_size, input_size]`.
layer_3 = tf.reshape(layer_3, [-1, batch_x_shape[0], n_hidden_3])
# Now we feed `layer_3` into the LSTM BRNN cell and obtain the LSTM BRNN output.
outputs, output_states = tf.nn.bidirectional_dynamic_rnn(cell_fw=lstm_fw_cell,
cell_bw=lstm_bw_cell,
inputs=layer_3,
dtype=tf.float32,
time_major=True,
sequence_length=seq_length)
# Reshape outputs from two tensors each of shape [n_steps, batch_size, n_cell_dim]
# to a single tensor of shape [n_steps*batch_size, 2*n_cell_dim]
outputs = tf.concat(outputs, 2)
outputs = tf.reshape(outputs, [-1, 2*n_cell_dim])
# Now we feed `outputs` to the fifth hidden layer with clipped RELU activation and dropout
b5 = variable_on_cpu('b5', [n_hidden_5], tf.random_normal_initializer(stddev=b5_stddev))
h5 = variable_on_cpu('h5', [(2 * n_cell_dim), n_hidden_5], tf.random_normal_initializer(stddev=h5_stddev))
layer_5 = tf.minimum(tf.nn.relu(tf.add(tf.matmul(outputs, h5), b5)), relu_clip)
layer_5 = tf.nn.dropout(layer_5, (1.0 - dropout[5]))
# Now we apply the weight matrix `h6` and bias `b6` to the output of `layer_5`
# creating `n_classes` dimensional vectors, the logits.
b6 = variable_on_cpu('b6', [n_hidden_6], tf.random_normal_initializer(stddev=b6_stddev))
h6 = variable_on_cpu('h6', [n_hidden_5, n_hidden_6], tf.random_normal_initializer(stddev=h6_stddev))
layer_6 = tf.add(tf.matmul(layer_5, h6), b6)
# Finally we reshape layer_6 from a tensor of shape [n_steps*batch_size, n_hidden_6]
# to the slightly more useful shape [n_steps, batch_size, n_hidden_6].
# Note, that this differs from the input in that it is time-major.
layer_6 = tf.reshape(layer_6, [-1, batch_x_shape[0], n_hidden_6])
# Output shape: [n_steps, batch_size, n_hidden_6]
return layer_6
# Accuracy and Loss
# =================
# In accord with "Deep Speech: Scaling up end-to-end speech recognition"
# (http://arxiv.org/abs/1412.5567),
# the loss function used by our network should be the CTC loss function
# (http://www.cs.toronto.edu/~graves/preprint.pdf).
# Conveniently, this loss function is implemented in TensorFlow.
# Thus, we can simply make use of this implementation to define our loss.
def calculate_accuracy_and_loss(batch_set, dropout):
r"""
This routine beam search decodes a mini-batch and calculates the loss and accuracy.
Next to total and average loss it returns the accuracy,
the decoded result and the batch's original Y.
"""
# Obtain the next batch of data
batch_x, batch_seq_len, batch_y = batch_set.next_batch()
# Calculate the logits of the batch using BiRNN
logits = BiRNN(batch_x, tf.to_int64(batch_seq_len), dropout)
# Compute the CTC loss using either TensorFlow's `ctc_loss` or Baidu's `warp_ctc_loss`.
if use_warpctc:
total_loss = tf.contrib.warpctc.warp_ctc_loss(labels=batch_y, inputs=logits, sequence_length=batch_seq_len)
else:
total_loss = tf.nn.ctc_loss(labels=batch_y, inputs=logits, sequence_length=batch_seq_len)
# Calculate the average loss across the batch
avg_loss = tf.reduce_mean(total_loss)
# Beam search decode the batch
decoded, _ = tf.nn.ctc_beam_search_decoder(logits, batch_seq_len, merge_repeated=False)
# Compute the edit (Levenshtein) distance
distance = tf.edit_distance(tf.cast(decoded[0], tf.int32), batch_y)
# Compute the accuracy
accuracy = tf.reduce_mean(distance)
# Finally we return the
# - calculated total and
# - average losses,
# - the Levenshtein distance,
# - the recognition accuracy,
# - the decoded batch and
# - the original batch_y (which contains the verified transcriptions).
return total_loss, avg_loss, distance, accuracy, decoded, batch_y
# Adam Optimization
# =================
# In constrast to "Deep Speech: Scaling up end-to-end speech recognition"
# (http://arxiv.org/abs/1412.5567),
# in which "Nesterov's Accelerated Gradient Descent"
# (www.cs.toronto.edu/~fritz/absps/momentum.pdf) was used,
# we will use the Adam method for optimization (http://arxiv.org/abs/1412.6980),
# because, generally, it requires less fine-tuning.
def create_optimizer():
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1,
beta2=beta2,
epsilon=epsilon)
return optimizer
# Towers
# ======
# In order to properly make use of multiple GPU's, one must introduce new abstractions,
# not present when using a single GPU, that facilitate the multi-GPU use case.
# In particular, one must introduce a means to isolate the inference and gradient
# calculations on the various GPU's.
# The abstraction we intoduce for this purpose is called a 'tower'.
# A tower is specified by two properties:
# * **Scope** - A scope, as provided by `tf.name_scope()`,
# is a means to isolate the operations within a tower.
# For example, all operations within "tower 0" could have their name prefixed with `tower_0/`.
# * **Device** - A hardware device, as provided by `tf.device()`,
# on which all operations within the tower execute.
# For example, all operations of "tower 0" could execute on the first GPU `tf.device('/gpu:0')`.
# As we are introducing one tower for each GPU, first we must determine how many GPU's are available
# Get a list of the available gpu's ['/gpu:0', '/gpu:1'...]
available_devices = get_available_gpus()
# If there are no GPU's use the CPU
if 0 == len(available_devices):
available_devices = ['/cpu:0']
def get_tower_results(batch_set, optimizer=None):
r"""
With this preliminary step out of the way, we can for each GPU introduce a
tower for which's batch we calculate
* The CTC decodings ``decoded``,
* The (total) loss against the outcome (Y) ``total_loss``,
* The loss averaged over the whole batch ``avg_loss``,
* The optimization gradient (computed based on the averaged loss),
* The Levenshtein distances between the decodings and their transcriptions ``distance``,
* The accuracy of the outcome averaged over the whole batch ``accuracy``
and retain the original ``labels`` (Y).
``decoded``, ``labels``, the optimization gradient, ``distance``, ``accuracy``,
``total_loss`` and ``avg_loss`` are collected into the corresponding arrays
``tower_decodings``, ``tower_labels``, ``tower_gradients``, ``tower_distances``,
``tower_accuracies``, ``tower_total_losses``, ``tower_avg_losses`` (dimension 0 being the tower).
Finally this new method ``get_tower_results()`` will return those tower arrays.
In case of ``tower_accuracies`` and ``tower_avg_losses``, it will return the
averaged values instead of the arrays.
"""
# Tower labels to return
tower_labels = []
# Tower decodings to return
tower_decodings = []
# Tower distances to return
tower_distances = []
# Tower total batch losses to return
tower_total_losses = []
# Tower gradients to return
tower_gradients = []
# To calculate the mean of the accuracies
tower_accuracies = []
# To calculate the mean of the losses
tower_avg_losses = []
with tf.variable_scope(tf.get_variable_scope()):
# Loop over available_devices
for i in xrange(len(available_devices)):
# Execute operations of tower i on device i
with tf.device(available_devices[i]):
# Create a scope for all operations of tower i
with tf.name_scope('tower_%d' % i) as scope:
# Calculate the avg_loss and accuracy and retrieve the decoded
# batch along with the original batch's labels (Y) of this tower
total_loss, avg_loss, distance, accuracy, decoded, labels = \
calculate_accuracy_and_loss(batch_set, no_dropout if optimizer is None else dropout_rates)
# Allow for variables to be re-used by the next tower
tf.get_variable_scope().reuse_variables()
# Retain tower's labels (Y)
tower_labels.append(labels)
# Retain tower's decoded batch
tower_decodings.append(decoded)
# Retain tower's distances
tower_distances.append(distance)
# Retain tower's total losses
tower_total_losses.append(total_loss)
if optimizer is not None:
# Compute gradients for model parameters using tower's mini-batch
gradients = optimizer.compute_gradients(avg_loss)
# Retain tower's gradients
tower_gradients.append(gradients)
# Retain tower's accuracy
tower_accuracies.append(accuracy)
# Retain tower's avg losses
tower_avg_losses.append(avg_loss)
# Return the results tuple, the gradients, and the means of accuracies and losses
return (tower_labels, tower_decodings, tower_distances, tower_total_losses), \
tower_gradients, \
tf.reduce_mean(tower_accuracies, 0), \
tf.reduce_mean(tower_avg_losses, 0)
def average_gradients(tower_gradients):
r"""
A routine for computing each variable's average of the gradients obtained from the GPUs.
Note also that this code acts as a syncronization point as it requires all
GPUs to be finished with their mini-batch before it can run to completion.
"""
# List of average gradients to return to the caller
average_grads = []
# Loop over gradient/variable pairs from all towers
for grad_and_vars in zip(*tower_gradients):
# Introduce grads to store the gradients for the current variable
grads = []
# Loop over the gradients for the current variable
for g, _ in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension
grad = tf.concat(grads, 0)
grad = tf.reduce_mean(grad, 0)
# Create a gradient/variable tuple for the current variable with its average gradient
grad_and_var = (grad, grad_and_vars[0][1])
# Add the current tuple to average_grads
average_grads.append(grad_and_var)
# Return result to caller
return average_grads
def apply_gradients(optimizer, average_grads):
r"""
Now next we introduce a function to apply the averaged gradients to update the
model's paramaters on the CPU
"""
apply_gradient_op = optimizer.apply_gradients(average_grads)
return apply_gradient_op
# Logging
# =======
def log_variable(variable, gradient=None):
r"""
We introduce a function for logging a tensor variable's current state.
It logs scalar values for the mean, standard deviation, minimum and maximum.
Furthermore it logs a histogram of its state and (if given) of an optimization gradient.
"""
name = variable.name
mean = tf.reduce_mean(variable)
tf.summary.scalar(name='%s/mean' % name, tensor=mean)
tf.summary.scalar(name='%s/sttdev' % name, tensor=tf.sqrt(tf.reduce_mean(tf.square(variable - mean))))
tf.summary.scalar(name='%s/max' % name, tensor=tf.reduce_max(variable))
tf.summary.scalar(name='%s/min' % name, tensor=tf.reduce_min(variable))
tf.summary.histogram(name=name, values=variable)
if gradient is not None:
if isinstance(gradient, tf.IndexedSlices):
grad_values = gradient.values
else:
grad_values = gradient
if grad_values is not None:
tf.summary.histogram(name='%s/gradients' % name, values=grad_values)
def log_grads_and_vars(grads_and_vars):
r"""
Let's also introduce a helper function for logging collections of gradient/variable tuples.
"""
for gradient, variable in grads_and_vars:
log_variable(variable, gradient=gradient)
# Finally we define the top directory for all logs and our current log sub-directory of it.
# We also add some log helpers.
logs_dir = os.environ.get('ds_logs_dir', 'logs')
log_dir = '%s/%s' % (logs_dir, time.strftime("%Y%m%d-%H%M%S"))
def get_git_revision_hash():
return subprocess.check_output(['git', 'rev-parse', 'HEAD']).strip()
def get_git_branch():
return subprocess.check_output(['git', 'rev-parse', '--abbrev-ref', 'HEAD']).strip()
# Helpers
# =======
def calculate_and_print_wer_report(caption, results_tuple):
r"""
This routine will print a WER report with a given caption.
It'll print the `mean` WER plus summaries of the ``ds_report_count`` top lowest
loss items from the provided WER results tuple
(only items with WER!=0 and ordered by their WER).
"""
items = zip(*results_tuple)
count = len(items)
mean_wer = 0.0
for i in xrange(count):
item = items[i]
# If distance > 0 we know that there is a WER > 0 and have to calculate it
if item[2] > 0:
# Replace result by language model corrected result
item = (item[0], correction(item[1]), item[2], item[3])
# Replacing accuracy tuple entry by the WER
item = (item[0], item[1], wer(item[0], item[1]), item[3])
# Replace items[i] with new item
items[i] = item
mean_wer = mean_wer + item[2]
# Getting the mean WER from the accumulated one
mean_wer = mean_wer / float(count)
# Filter out all items with WER=0
items = [a for a in items if a[2] > 0]
# Order the remaining items by their loss (lowest loss on top)
items.sort(key=lambda a: a[3])
# Take only the first report_count items
items = items[:report_count]
# Order this top ten items by their WER (lowest WER on top)
items.sort(key=lambda a: a[2])
print "%s WER: %f" % (caption, mean_wer)
for a in items:
print "-" * 80
print " WER: %f" % a[2]
print " loss: %f" % a[3]
print " source: \"%s\"" % a[0]
print " result: \"%s\"" % a[1]
return mean_wer
def collect_results(results_tuple, returns):
r"""
This routine will help collecting partial results for the WER reports.
The ``results_tuple`` is composed of an array of the original labels,
an array of the corresponding decodings, an array of the corrsponding
distances and an array of the corresponding losses. ``returns`` is built up
in a similar way, containing just the unprocessed results of one
``session.run`` call (effectively of one batch).
Labels and decodings are converted to text before splicing them into their
corresponding results_tuple lists. In the case of decodings,
for now we just pick the first available path.
"""
# Each of the arrays within results_tuple will get extended by a batch of each available device
for i in xrange(len(available_devices)):
# Collect the labels
results_tuple[0].extend(sparse_tensor_value_to_texts(returns[0][i]))
# Collect the decodings - at the moment we default to the first one
results_tuple[1].extend(sparse_tensor_value_to_texts(returns[1][i][0]))
# Collect the distances
results_tuple[2].extend(returns[2][i])
# Collect the losses
results_tuple[3].extend(returns[3][i])
# For reporting we also need a standard way to do time measurements.
def stopwatch(start_duration=0):
r"""
This function will toggle a stopwatch.
The first call starts it, second call stops it, third call continues it etc.
So if you want to measure the accumulated time spent in a certain area of the code,
you can surround that code by stopwatch-calls like this:
.. code:: python
fun_time = 0 # initializes a stopwatch
[...]
for i in xrange(10):
[...]
# Starts/continues the stopwatch - fun_time is now a point in time (again)
fun_time = stopwatch(fun_time)
fun()
# Pauses the stopwatch - fun_time is now a duration
fun_time = stopwatch(fun_time)
[...]
# The following line only makes sense after an even call of :code:`fun_time = stopwatch(fun_time)`.
print "Time spent in fun():", format_duration(fun_time)
"""
if start_duration == 0:
return datetime.datetime.utcnow()
else:
return datetime.datetime.utcnow() - start_duration
def format_duration(duration):
"""Formats the result of an even stopwatch call as hours:minutes:seconds"""
m, s = divmod(duration.seconds, 60)
h, m = divmod(m, 60)
return "%d:%02d:%02d" % (h, m, s)
# Execution
# =========
# To run our different graphs in separate sessions,
# we first need to create some common infrastructure.
#
# At first we introduce the functions `read_data_sets` and `read_data_set` to read in data sets.
# The first returns a `DataSets` object of the selected importer, containing all available sets.
# The latter takes the name of the required data set
# (`'train'`, `'dev'` or `'test'`) as string and returns the respective set.
def read_data_sets(set_names):
r"""
Returns a :class:`DataSets` object of the selected importer, containing all available sets.
"""
# Obtain all the data sets
return ds_importer_module.read_data_sets(ds_dataset_path,
train_batch_size,
dev_batch_size,
test_batch_size,
n_input,
n_context,
limit_dev=limit_dev,
limit_test=limit_test,
limit_train=limit_train,
sets=set_names)
def read_data_set(set_name):
r"""
``set_name``: string, the name of the required data set (``'train'``, ``'dev'`` or ``'test'``)
Returns the respective set.
"""
# Obtain all the data sets
data_sets = read_data_sets([set_name])
# Pick the train, dev, or test data set from it
return getattr(data_sets, set_name)
def create_execution_context(set_name):
r"""
The most important data structure that will be shared among the following
routines is a so called ``execution context``.
It's a tuple with four elements: The graph, the data set (one of train/dev/test),
the top level graph entry point tuple from ``get_tower_results()``
and a saver object for persistence.
Let's at first introduce the construction routine for an execution context.
It takes the data set's name as string ("train", "dev" or "test")
and returns the execution context tuple.
An execution context tuple is of the form ``(graph, data_set, tower_results, saver)``
when not training. ``graph`` is the ``tf.Graph`` in which the operators reside.
``data_set`` is the selected data set (train, dev, or test).
``tower_results`` is the result of a call to ``get_tower_results()``.
``saver`` is a ``tf.train.Saver`` which can be used to save the model.
When training an execution context is of the form
``(graph, data_set, tower_results, saver, apply_gradient_op, merged, writer)``.
The first four items are the same as in the above case.
``apply_gradient_op`` is an operator that applies the gradents to the learned parameters.
``merged`` contains all summaries for tensorboard.
Finally, ``writer`` is the ``tf.train.SummaryWriter`` used to write summaries for tensorboard.
"""
graph = tf.Graph()
with graph.as_default():
# Set the global random seed for determinism
tf.set_random_seed(random_seed)
# Get the required data set
data_set = read_data_set(set_name)
# Define bool to indicate if data_set is the training set
is_train = set_name == 'train'
# If training create optimizer
optimizer = create_optimizer() if is_train else None
# Get the data_set specific graph end-points
tower_results = get_tower_results(data_set, optimizer=optimizer)
if is_train:
# Average tower gradients
avg_tower_gradients = average_gradients(tower_results[1])
# Add logging of averaged gradients
if log_variables:
log_grads_and_vars(avg_tower_gradients)
# Apply gradients to modify the model
apply_gradient_op = apply_gradients(optimizer, avg_tower_gradients)
# Create a saver to checkpoint the model
saver = tf.train.Saver(tf.global_variables())
if is_train:
# Prepare tensor board logging
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter(log_dir, graph)
return (graph, data_set, tower_results, saver, apply_gradient_op, merged, writer)
else:
return (graph, data_set, tower_results, saver)
def start_execution_context(execution_context, model_path=None):
r"""
Now let's introduce a routine for starting an execution context.
By passing in the execution context and the file path of the model, it will
1. Create a new session using the execution model's graph,
2. Load (restore) the model from the file path into it,
3. Start the associated queue and runner threads.
Finally it will return the new session.
"""
# Obtain the Graph in which to execute
graph = execution_context[0]
# Create a new session and load the execution context's graph into it
session = tf.Session(config=session_config, graph=graph)
# Set graph as the default Graph
with graph.as_default():
if model_path is None:
# Init all variables for first use
init_op = tf.global_variables_initializer()
session.run(init_op)
else:
# Loading the model into the session
execution_context[3].restore(session, model_path)
# Create Coordinator to manage threads
coord = tf.train.Coordinator()
# Start queue runner threads
managed_threads = tf.train.start_queue_runners(sess=session, coord=coord)
# Start importer's queue threads
managed_threads = managed_threads + execution_context[1].start_queue_threads(session, coord)
return session, coord, managed_threads
def persist_model(execution_context, session, checkpoint_path, global_step):
r"""
This helper method persists the contained model to disk and returns
the model's filename, constructed from ``checkpoint_path`` and ``global_step``
"""
# Saving session's model into checkpoint dir
return execution_context[3].save(session, checkpoint_path, global_step=global_step)
def stop_execution_context(execution_context, session, coord, managed_threads, checkpoint_path=None, global_step=None):
r"""
The following helper method stops an execution context.
Before closing the provided ``session``, it will persist the contained model to disk.
The model's filename will be returned.
"""
# If the model is not persisted, we'll return 'None'
hibernation_path = None
if checkpoint_path is not None and global_step is not None:
# Saving session's model into checkpoint dir
hibernation_path = persist_model(execution_context, session, checkpoint_path, global_step)
# Close importer's queue
execution_context[1].close_queue(session)
# Request managed threads stop
coord.request_stop()
# Wait until managed threads stop
coord.join(managed_threads)
# Free all allocated resources of the session
session.close()
return hibernation_path
def calculate_loss_and_report(execution_context, session, epoch=-1, query_report=False):
r"""
Now let's introduce the main routine for training and inference.
It takes a started execution context (given by ``execution_context``),
a ``Session`` (``session``), an optional epoch index (``epoch``)
and a flag (``query_report``) which indicates whether to calculate the WER
report data or not.
Its main duty is to iterate over all batches and calculate the mean loss.
If a non-negative epoch is provided, it will also optimize the parameters.
If ``query_report`` is ``False``, the default, it will return a tuple which
contains the mean loss.
If ``query_report`` is ``True``, the mean accuracy and individual results
are also included in the returned tuple.
"""
# An epoch of -1 means no train run
do_training = epoch >= 0
# Unpack variables
if do_training:
graph, data_set, tower_results, saver, apply_gradient_op, merged, writer = execution_context
else:
graph, data_set, tower_results, saver = execution_context
results_params, _, avg_accuracy, avg_loss = tower_results
batches_per_device = ceil(float(data_set.total_batches) / len(available_devices))
total_loss = 0.0
params = OrderedDict()
params['avg_loss'] = avg_loss
# Facilitate a train run
if do_training:
params['apply_gradient_op'] = apply_gradient_op
if log_variables:
params['merged'] = merged
# Requirements to display a WER report
if query_report:
# Reset accuracy
total_accuracy = 0.0
# Create report results tuple
report_results = ([],[],[],[])
# Extend the session.run parameters
params['sample_results'] = [results_params, avg_accuracy]
# Get the index of each of the session fetches so we can recover the results more easily
param_idx = dict(zip(params.keys(), range(len(params))))
params = params.values()
# Loop over the batches
for batch in range(int(batches_per_device)):
extra_params = { }
if do_training and do_fulltrace:
loss_run_metadata = tf.RunMetadata()
extra_params['options'] = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
extra_params['run_metadata'] = loss_run_metadata
# Compute the batch
result = session.run(params, **extra_params)
# Add batch to loss
total_loss += result[param_idx['avg_loss']]
if do_training:
# Log all variable states in current step
step = epoch * data_set.total_batches + batch * len(available_devices)
if log_variables:
writer.add_summary(result[param_idx['merged']], step)
if do_fulltrace:
writer.add_run_metadata(loss_run_metadata, 'loss_epoch%d_batch%d' % (epoch, batch))
writer.flush()
if query_report:
sample_results = result[param_idx['sample_results']]
# Collect individual sample results
collect_results(report_results, sample_results[0])
# Add batch to total_accuracy
total_accuracy += sample_results[1]
# Returning the batch set result tuple
loss = total_loss / batches_per_device
if query_report:
return (loss, total_accuracy / batches_per_device, report_results)
else:
return (loss, None, None)
def print_report(caption, batch_set_result):
r"""
This routine will print a report from a provided batch set result tuple.
It takes a caption for titling the output plus the batch set result tuple.
If the batch set result tuple contains accuracy and a report results tuple,
a complete WER report will be calculated, printed and its mean WER returned.
Otherwise it will just print the loss and return ``None``.
"""
# Unpacking batch set result tuple
loss, accuracy, results_tuple = batch_set_result
# We always have a loss value
title = caption + " loss=" + "{:.9f}".format(loss)
mean_wer = None
if accuracy is not None and results_tuple is not None:
title += " avg_cer=" + "{:.9f}".format(accuracy)
mean_wer = calculate_and_print_wer_report(title, results_tuple)
else:
print title
return mean_wer