In an infinite chess board with coordinates from -infinity
to +infinity
, you have a knight at square [0, 0]
.
A knight has 8 possible moves it can make, as illustrated below. Each move is two squares in a cardinal direction, then one square in an orthogonal direction.
Return the minimum number of steps needed to move the knight to the square [x, y]
. It is guaranteed the answer exists.
Example 1:
Input: x = 2, y = 1 Output: 1 Explanation: [0, 0] → [2, 1]
Example 2:
Input: x = 5, y = 5 Output: 4 Explanation: [0, 0] → [2, 1] → [4, 2] → [3, 4] → [5, 5]
Constraints:
-300 <= x, y <= 300
0 <= |x| + |y| <= 300
BFS.
class Solution:
def minKnightMoves(self, x: int, y: int) -> int:
q = deque([(0, 0)])
ans = 0
vis = {(0, 0)}
dirs = ((-2, 1), (-1, 2), (1, 2), (2, 1), (2, -1), (1, -2), (-1, -2), (-2, -1))
while q:
for _ in range(len(q)):
i, j = q.popleft()
if (i, j) == (x, y):
return ans
for a, b in dirs:
c, d = i + a, j + b
if (c, d) not in vis:
vis.add((c, d))
q.append((c, d))
ans += 1
return -1
Two-end BFS:
class Solution:
def minKnightMoves(self, x: int, y: int) -> int:
def extend(m1, m2, q):
for _ in range(len(q)):
i, j = q.popleft()
step = m1[(i, j)]
for a, b in (
(-2, 1),
(-1, 2),
(1, 2),
(2, 1),
(2, -1),
(1, -2),
(-1, -2),
(-2, -1),
):
x, y = i + a, j + b
if (x, y) in m1:
continue
if (x, y) in m2:
return step + 1 + m2[(x, y)]
q.append((x, y))
m1[(x, y)] = step + 1
return -1
if (x, y) == (0, 0):
return 0
q1, q2 = deque([(0, 0)]), deque([(x, y)])
m1, m2 = {(0, 0): 0}, {(x, y): 0}
while q1 and q2:
t = extend(m1, m2, q1) if len(q1) <= len(q2) else extend(m2, m1, q2)
if t != -1:
return t
return -1
class Solution {
public int minKnightMoves(int x, int y) {
x += 310;
y += 310;
int ans = 0;
Queue<int[]> q = new ArrayDeque<>();
q.offer(new int[] {310, 310});
boolean[][] vis = new boolean[700][700];
vis[310][310] = true;
int[][] dirs = {{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}};
while (!q.isEmpty()) {
for (int k = q.size(); k > 0; --k) {
int[] p = q.poll();
if (p[0] == x && p[1] == y) {
return ans;
}
for (int[] dir : dirs) {
int c = p[0] + dir[0];
int d = p[1] + dir[1];
if (!vis[c][d]) {
vis[c][d] = true;
q.offer(new int[] {c, d});
}
}
}
++ans;
}
return -1;
}
}
Two-end BFS:
class Solution {
private int n = 700;
public int minKnightMoves(int x, int y) {
if (x == 0 && y == 0) {
return 0;
}
x += 310;
y += 310;
Map<Integer, Integer> m1 = new HashMap<>();
Map<Integer, Integer> m2 = new HashMap<>();
m1.put(310 * n + 310, 0);
m2.put(x * n + y, 0);
Queue<int[]> q1 = new ArrayDeque<>();
Queue<int[]> q2 = new ArrayDeque<>();
q1.offer(new int[] {310, 310});
q2.offer(new int[] {x, y});
while (!q1.isEmpty() && !q2.isEmpty()) {
int t = q1.size() <= q2.size() ? extend(m1, m2, q1) : extend(m2, m1, q2);
if (t != -1) {
return t;
}
}
return -1;
}
private int extend(Map<Integer, Integer> m1, Map<Integer, Integer> m2, Queue<int[]> q) {
int[][] dirs = {{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}};
for (int k = q.size(); k > 0; --k) {
int[] p = q.poll();
int step = m1.get(p[0] * n + p[1]);
for (int[] dir : dirs) {
int x = p[0] + dir[0];
int y = p[1] + dir[1];
if (m1.containsKey(x * n + y)) {
continue;
}
if (m2.containsKey(x * n + y)) {
return step + 1 + m2.get(x * n + y);
}
m1.put(x * n + y, step + 1);
q.offer(new int[] {x, y});
}
}
return -1;
}
}
class Solution {
public:
int minKnightMoves(int x, int y) {
x += 310;
y += 310;
int ans = 0;
queue<pair<int, int>> q;
q.push({310, 310});
vector<vector<bool>> vis(700, vector<bool>(700));
vis[310][310] = true;
vector<vector<int>> dirs = {{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}};
while (!q.empty()) {
for (int k = q.size(); k > 0; --k) {
auto p = q.front();
q.pop();
if (p.first == x && p.second == y) return ans;
for (auto& dir : dirs) {
int c = p.first + dir[0], d = p.second + dir[1];
if (!vis[c][d]) {
vis[c][d] = true;
q.push({c, d});
}
}
}
++ans;
}
return -1;
}
};
Two-end BFS:
typedef pair<int, int> PII;
class Solution {
public:
int n = 700;
int minKnightMoves(int x, int y) {
if (x == 0 && y == 0) return 0;
x += 310;
y += 310;
unordered_map<int, int> m1;
unordered_map<int, int> m2;
m1[310 * n + 310] = 0;
m2[x * n + y] = 0;
queue<PII> q1;
queue<PII> q2;
q1.push({310, 310});
q2.push({x, y});
while (!q1.empty() && !q2.empty()) {
int t = q1.size() <= q2.size() ? extend(m1, m2, q1) : extend(m2, m1, q2);
if (t != -1) return t;
}
return -1;
}
int extend(unordered_map<int, int>& m1, unordered_map<int, int>& m2, queue<PII>& q) {
vector<vector<int>> dirs = {{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}};
for (int k = q.size(); k > 0; --k) {
auto p = q.front();
q.pop();
int i = p.first, j = p.second;
int step = m1[i * n + j];
for (auto& dir : dirs) {
int x = i + dir[0], y = j + dir[1];
if (m1.count(x * n + y)) continue;
if (m2.count(x * n + y)) return step + 1 + m2[x * n + y];
m1[x * n + y] = step + 1;
q.push({x, y});
}
}
return -1;
}
};
use std::collections::VecDeque;
const DIR: [(i32, i32); 8] = [
(-2, 1),
(2, 1),
(-1, 2),
(1, 2),
(2, -1),
(-2, -1),
(1, -2),
(-1, -2),
];
impl Solution {
#[allow(dead_code)]
pub fn min_knight_moves(x: i32, y: i32) -> i32 {
// The original x, y are from [-300, 300]
// Let's shift them to [0, 600]
let x: i32 = x + 300;
let y: i32 = y + 300;
let mut ret = -1;
let mut vis: Vec<Vec<bool>> = vec![vec![false; 618]; 618];
// <X, Y, Current Steps>
let mut q: VecDeque<(i32, i32, i32)> = VecDeque::new();
q.push_back((300, 300, 0));
while !q.is_empty() {
let (i, j, s) = q.front().unwrap().clone();
q.pop_front();
if i == x && j == y {
ret = s;
break;
}
Self::enqueue(&mut vis, &mut q, i, j, s);
}
ret
}
#[allow(dead_code)]
fn enqueue(
vis: &mut Vec<Vec<bool>>,
q: &mut VecDeque<(i32, i32, i32)>,
i: i32,
j: i32,
cur_step: i32
) {
let next_step = cur_step + 1;
for (dx, dy) in DIR {
let x = i + dx;
let y = j + dy;
if Self::check_bounds(x, y) || vis[x as usize][y as usize] {
// This <X, Y> pair is either out of bound, or has been visited before
// Just ignore this pair
continue;
}
// Otherwise, add the pair to the queue
// Also remember to update the vis vector
vis[x as usize][y as usize] = true;
q.push_back((x, y, next_step));
}
}
#[allow(dead_code)]
fn check_bounds(i: i32, j: i32) -> bool {
i < 0 || i > 600 || j < 0 || j > 600
}
}
Two-end BFS:
use std::collections::VecDeque;
use std::collections::HashMap;
const DIR: [(i32, i32); 8] = [
(-2, 1),
(2, 1),
(-1, 2),
(1, 2),
(2, -1),
(-2, -1),
(1, -2),
(-1, -2),
];
impl Solution {
#[allow(dead_code)]
pub fn min_knight_moves(x: i32, y: i32) -> i32 {
if x == 0 && y == 0 {
return 0;
}
// Otherwise, let's shift <X, Y> from [-300, 300] -> [0, 600]
let x = x + 300;
let y = y + 300;
let mut ret = -1;
// Initialize the two hash map, used to track if a node has been visited
let mut map_to: HashMap<i32, i32> = HashMap::new();
let mut map_from: HashMap<i32, i32> = HashMap::new();
// Input the original status
map_to.insert(601 * 300 + 300, 0);
map_from.insert(601 * x + y, 0);
let mut q_to: VecDeque<(i32, i32)> = VecDeque::new();
let mut q_from: VecDeque<(i32, i32)> = VecDeque::new();
// Initialize the two queue
q_to.push_back((300, 300));
q_from.push_back((x, y));
while !q_to.is_empty() && !q_from.is_empty() {
let step = if q_to.len() < q_from.len() {
Self::extend(&mut map_to, &mut map_from, &mut q_to)
} else {
Self::extend(&mut map_from, &mut map_to, &mut q_from)
};
if step != -1 {
ret = step;
break;
}
}
ret
}
#[allow(dead_code)]
fn extend(
map_to: &mut HashMap<i32, i32>,
map_from: &mut HashMap<i32, i32>,
cur_q: &mut VecDeque<(i32, i32)>
) -> i32 {
let n = cur_q.len();
for _ in 0..n {
let (i, j) = cur_q.front().unwrap().clone();
cur_q.pop_front();
// The cur_step here must exist
let cur_step = map_to
.get(&(601 * i + j))
.unwrap()
.clone();
for (dx, dy) in DIR {
let x = i + dx;
let y = j + dy;
// Check if this node has been visited
if map_to.contains_key(&(601 * x + y)) {
// Just ignore this node
continue;
}
// Check if this node has been visited by the other side
if map_from.contains_key(&(601 * x + y)) {
// We found the node
return (
cur_step +
1 +
map_from
.get(&(601 * x + y))
.unwrap()
.clone()
);
}
// Otherwise, update map_to and push the new node to queue
map_to.insert(601 * x + y, cur_step + 1);
cur_q.push_back((x, y));
}
}
-1
}
}
Two-end BFS:
func minKnightMoves(x int, y int) int {
x, y = x+310, y+310
ans := 0
q := [][]int{{310, 310}}
vis := make([][]bool, 700)
for i := range vis {
vis[i] = make([]bool, 700)
}
dirs := [][]int{{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}}
for len(q) > 0 {
for k := len(q); k > 0; k-- {
p := q[0]
q = q[1:]
if p[0] == x && p[1] == y {
return ans
}
for _, dir := range dirs {
c, d := p[0]+dir[0], p[1]+dir[1]
if !vis[c][d] {
vis[c][d] = true
q = append(q, []int{c, d})
}
}
}
ans++
}
return -1
}
func minKnightMoves(x int, y int) int {
if x == 0 && y == 0 {
return 0
}
n := 700
x, y = x+310, y+310
q1, q2 := []int{310*700 + 310}, []int{x*n + y}
m1, m2 := map[int]int{310*700 + 310: 0}, map[int]int{x*n + y: 0}
dirs := [][]int{{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}}
extend := func() int {
for k := len(q1); k > 0; k-- {
p := q1[0]
q1 = q1[1:]
i, j := p/n, p%n
step := m1[i*n+j]
for _, dir := range dirs {
x, y := i+dir[0], j+dir[1]
t := x*n + y
if _, ok := m1[t]; ok {
continue
}
if v, ok := m2[t]; ok {
return step + 1 + v
}
m1[t] = step + 1
q1 = append(q1, t)
}
}
return -1
}
for len(q1) > 0 && len(q2) > 0 {
if len(q1) <= len(q2) {
q1, q2 = q2, q1
m1, m2 = m2, m1
}
t := extend()
if t != -1 {
return t
}
}
return -1
}