-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
338 lines (303 loc) · 12.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
"""Tuning Huggingface Models."""
import os
os.environ["WANDB_DISABLED"] = "true"
import argparse
import logging
import torch
from transformers import (
AutoConfig,
AutoModelForSeq2SeqLM,
AutoTokenizer,
DataCollatorForSeq2Seq,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
)
from transformers.trainer_utils import EvalPrediction
import datasets
import evaluate
from query import clean_output
logger = logging.getLogger(__name__)
def main():
"""Run the main training function."""
# load config, tokenizer, and model
config = AutoConfig.from_pretrained(
args.config_name if (args.config_name is not None) else args.model_name,
cache_dir=args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if (args.tokenizer_name is not None) else args.model_name,
cache_dir=args.cache_dir,
)
model_kwargs = {"torch_dtype": torch.bfloat16}
if args.distribute_model:
model_kwargs["device_map"] = "balanced_low_0"
model = AutoModelForSeq2SeqLM.from_pretrained(
args.model_name,
cache_dir=args.cache_dir,
**model_kwargs,
)
# load train, validation, and test data
data_files = {}
if args.do_train:
data_files["train"] = args.train_data_path
extension = args.train_data_path.split(".")[-1]
if args.do_eval:
data_files["validation"] = args.eval_data_path
extension = args.eval_data_path.split(".")[-1]
if args.do_predict:
data_files["test"] = args.test_data_path
extension = args.test_data_path.split(".")[-1]
raw_datasets = datasets.load_dataset(
extension,
data_files=data_files,
cache_dir=args.cache_dir,
)
# column names to remove after preprocessing
train_column_names, eval_column_names, test_column_names = None, None, None
if args.do_train:
train_column_names = raw_datasets["train"].column_names
if args.do_eval:
eval_column_names = raw_datasets["validation"].column_names
if args.do_predict:
test_column_names = raw_datasets["test"].column_names
# tokenization config
padding = "max_length" if args.pad_to_max_length else False
max_seq_length = min(args.max_seq_length, config.n_positions)
max_answer_length = args.max_answer_length
# training args
train_kwargs = {
"output_dir": args.output_dir,
"num_train_epochs": args.num_train_epochs,
"max_steps": args.max_steps,
"learning_rate": args.learning_rate,
"gradient_accumulation_steps": args.gradient_accumulation_steps,
"per_device_train_batch_size": args.per_device_train_batch_size,
"evaluation_strategy": args.evaluation_strategy,
"eval_steps": args.eval_steps,
"per_device_eval_batch_size": args.per_device_eval_batch_size,
"save_strategy": args.save_strategy,
"save_steps": args.save_steps,
}
train_kwargs = {k: v for k, v in train_kwargs.items() if v is not None}
training_args = Seq2SeqTrainingArguments(
do_train=args.do_train,
do_eval=args.do_eval,
do_predict=args.do_predict,
predict_with_generate=True,
report_to="none",
**train_kwargs,
)
# preprocessing
def preprocess_function(examples: datasets.Dataset) -> dict:
inputs = examples["input"]
targets = examples["output"]
model_inputs = tokenizer(
inputs,
max_length=max_seq_length,
padding=padding,
truncation=True,
) # {"input_ids": ..., "attention_mask": ...}
labels = tokenizer(
text_target=targets,
max_length=max_answer_length,
padding=padding,
truncation=True,
)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
train_dataset, eval_dataset, predict_dataset = None, None, None
if args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_examples = raw_datasets["train"]
if args.max_train_examples is not None:
max_train_examples = min(args.max_train_examples, len(train_examples))
train_examples = train_examples.select(range(max_train_examples))
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_examples.map(
preprocess_function,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=train_column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_examples = raw_datasets["validation"]
if args.max_eval_examples is not None:
max_eval_examples = min(args.max_eval_examples, len(eval_examples))
eval_examples = eval_examples.select(range(max_eval_examples))
with training_args.main_process_first(
desc="validation dataset map pre-processing"
):
eval_dataset = eval_examples.map(
preprocess_function,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=eval_column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if args.do_predict:
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_examples = raw_datasets["test"]
if args.max_predict_examples is not None:
predict_examples = predict_examples.select(range(args.max_predict_examples))
with training_args.main_process_first(
desc="prediction dataset map pre-processing"
):
predict_dataset = predict_examples.map(
preprocess_function,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=test_column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
# data collator
label_pad_token_id = tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
)
# metric
metric = evaluate.load("exact_match")
def compute_metrics(p: EvalPrediction):
preds = p.predictions
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
decoded_preds = [clean_output(dp) for dp in decoded_preds]
p.label_ids[p.label_ids < 0] = 0
decoded_labels = tokenizer.batch_decode(p.label_ids, skip_special_tokens=True)
decoded_preds = [clean_output(dp) for dp in decoded_preds]
decoded_labels = [clean_output(dl) for dl in decoded_labels]
return metric.compute(predictions=decoded_preds, references=decoded_labels)
# train, evaluate, and test
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if args.do_train else None,
eval_dataset=eval_dataset if args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics
if training_args.predict_with_generate
else None,
)
# Training
if args.do_train:
train_result = trainer.train()
trainer.save_model()
metrics = train_result.metrics
max_train_examples = (
args.max_train_examples
if (args.max_train_examples is not None)
else len(train_dataset)
)
metrics["train_samples"] = min(max_train_examples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
max_length = (
training_args.generation_max_length
if training_args.generation_max_length is not None
else max_answer_length
)
num_beams = (
args.num_beams
if args.num_beams is not None
else training_args.generation_num_beams
)
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(
max_length=max_length, num_beams=num_beams, metric_key_prefix="eval"
)
max_eval_examples = (
args.max_eval_examples
if args.max_eval_examples is not None
else len(eval_dataset)
)
metrics["eval_samples"] = min(max_eval_examples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Prediction
if training_args.do_predict:
logger.info("*** Predict ***")
results = trainer.predict(predict_dataset, predict_examples)
metrics = results.metrics
max_predict_examples = (
args.max_predict_examples
if args.max_predict_examples is not None
else len(predict_dataset)
)
metrics["predict_samples"] = min(max_predict_examples, len(predict_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# hf name
parser.add_argument("--model_name", type=str, default="google/flan-t5-xl")
parser.add_argument("--tokenizer_name", type=str, default=None)
parser.add_argument("--config_name", type=str, default=None)
parser.add_argument("--cache_dir", type=str, default=None)
parser.add_argument("--overwrite_cache", action="store_true")
# data path
parser.add_argument("--output_dir", type=str, default="checkpoints")
parser.add_argument("--train_data_path", type=str, default=None)
parser.add_argument("--eval_data_path", type=str, default=None)
parser.add_argument("--test_data_path", type=str, default=None)
# preprocess config
parser.add_argument(
"--max_seq_length",
type=int,
default=512,
help="Maximum sequence length (by tokens) for inputs.",
)
parser.add_argument(
"--max_answer_length",
type=int,
default=16,
help="Maximum sequence length (by tokens) for answers.",
)
parser.add_argument("--pad_to_max_length", action="store_true")
parser.add_argument("--preprocessing_num_workers", type=int, default=1)
# https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments
# training config
parser.add_argument("--num_train_epochs", type=int, default=3)
parser.add_argument("--max_steps", type=int, default=None)
parser.add_argument("--learning_rate", type=float, default=5e-5)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--per_device_train_batch_size", type=int, default=None)
parser.add_argument("--distribute_model", action="store_true")
# evaluation & save model
parser.add_argument(
"--evaluation_strategy",
type=str,
default="epoch",
choices=["epoch", "steps", "no"],
)
parser.add_argument("--eval_steps", type=int, default=None)
parser.add_argument("--per_device_eval_batch_size", type=int, default=None)
parser.add_argument(
"--save_strategy", type=str, default="epoch", choices=["epoch", "steps", "no"]
)
parser.add_argument("--save_steps", type=int, default=None)
# generation config
parser.add_argument("--num_beams", type=int, default=1)
# train/eval/test mode
parser.add_argument("--do_train", action="store_true")
parser.add_argument("--do_eval", action="store_true")
parser.add_argument("--do_predict", action="store_true")
parser.add_argument("--max_train_examples", type=int, default=None)
parser.add_argument("--max_eval_examples", type=int, default=None)
parser.add_argument("--max_predict_examples", type=int, default=None)
args = parser.parse_args()
main()