-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdataset.py
60 lines (46 loc) · 1.38 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# modified from https://github.com/desimone/vision/blob/fb74c76d09bcc2594159613d5bdadd7d4697bb11/torchvision/datasets/folder.py
import os
import os.path
import torch
from torchvision import transforms
import torch.utils.data as data
from PIL import Image
import pdb
IMG_EXTENSIONS = [
'.jpg',
'.JPG',
'.jpeg',
'.JPEG',
'.png',
'.PNG',
'.ppm',
'.PPM',
'.bmp',
'.BMP',
]
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def default_loader(path):
return Image.open(path).convert('RGB')
class ImageFolder(data.Dataset):
""" ImageFolder can be used to load images where there are no labels."""
def __init__(self, root, transform=None, loader=default_loader):
images = []
for filename in os.listdir(root):
if is_image_file(filename):
images.append('{}'.format(filename))
self.root = root
self.imgs = images
self.transform = transform
self.loader = loader
def __getitem__(self, index):
filename = self.imgs[index]
try:
img = self.loader(os.path.join(self.root, filename))
except:
return torch.zeros((3, 32, 32))
if self.transform is not None:
img = self.transform(img)
return img, filename
def __len__(self):
return len(self.imgs)