-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathopt.py
354 lines (330 loc) · 11.3 KB
/
opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import argparse
def get_opts():
parser = argparse.ArgumentParser()
parser.add_argument(
"--root_dir",
type=str,
default="/home/ubuntu/data/nerf_example_data/nerf_synthetic/lego",
help="root directory of dataset",
)
parser.add_argument(
"--dataset_name",
type=str,
default="blender",
choices=[
"nerds360",
"nerds360_ae"
],
help="which dataset to train/val",
)
parser.add_argument(
"--save_path", type=str, default="vanilla", help="save results during eval"
)
parser.add_argument(
"--img_wh",
nargs="+",
type=int,
default=[640, 480],
help="resolution (img_w, img_h) of the image",
)
parser.add_argument(
"--white_back",
default=False,
action="store_true",
help="try for synthetic scenes like blender",
)
parser.add_argument(
"--spheric_poses",
default=True,
action="store_true",
help="whether images are taken in spheric poses (for llff)",
)
parser.add_argument(
"--emb_dim",
type=int,
default=2458,
help="Total number of different objects in a category",
)
parser.add_argument(
"--latent_dim",
type=int,
default=256,
help="dim of latent each for shape and appearance",
)
parser.add_argument(
"--N_emb_xyz",
type=int,
default=10,
help="number of frequencies in xyz positional encoding",
)
parser.add_argument(
"--N_emb_dir",
type=int,
default=4,
help="number of frequencies in dir positional encoding",
)
parser.add_argument(
"--N_samples", type=int, default=64, help="number of coarse samples"
)
parser.add_argument(
"--N_importance", type=int, default=64, help="number of additional fine samples"
)
parser.add_argument(
"--use_disp",
default=False,
action="store_true",
help="use disparity depth sampling",
)
parser.add_argument(
"--perturb",
type=float,
default=1.0,
help="factor to perturb depth sampling points",
)
parser.add_argument(
"--noise_std",
type=float,
default=1.0,
help="std dev of noise added to regularize sigma",
)
parser.add_argument(
"--crop_img",
default=False,
action="store_true",
help="initially crop the image or not",
)
parser.add_argument(
"--use_image_encoder",
default=False,
action="store_true",
help="initially crop the image or not",
)
parser.add_argument(
"--latent_code_path", type=str, default=None, help="which category to use"
)
parser.add_argument(
"--encoder_type", type=str, default="resnet", help="which category to use"
)
parser.add_argument(
"--finetune_lpips",
default=False,
action="store_true",
help="whether to finetune with lpips loss and patched dataloader",
)
# params for SRN multicat training
parser.add_argument(
"--splits", type=str, default=None, help="which category to use"
)
# parser.add_argument("--run_eval", default=False, action="store_true")
parser.add_argument("--eval_mode", default=None, type=str)
# options "full_eval", "vis_only"
parser.add_argument("--do_generate", default=False, action="store_true")
parser.add_argument(
"--val_splits", type=str, default=None, help="which category to use"
)
parser.add_argument("--cat", type=str, default=None, help="which category to use")
parser.add_argument("--use_tcnn", default=False, action="store_true")
parser.add_argument(
"--model_type",
type=str,
default="geometry",
help="which model to use i.e. geometry or render for refnerf",
)
parser.add_argument(
"--train_opacity_rgb",
default=False,
action="store_true",
help="whether to train both opacity and rgb for voxel model",
)
# params for latent codes:
#
parser.add_argument(
"--N_max_objs",
type=int,
default=151,
help="maximum number of object instances in the dataset",
)
# onl for nerfmvs
parser.add_argument(
"--nv",
type=int,
default=3,
help="maximum number of object instances in the dataset",
)
parser.add_argument(
"--num_nocs_ch",
type=int,
default=256,
help="maximum number of object instances in the dataset",
)
parser.add_argument(
"--N_obj_code_length", type=int, default=128, help="size of latent vector"
)
## params for Nerf Model
# (Scene branch)
parser.add_argument("--D", type=int, default=8)
parser.add_argument("--W", type=int, default=256)
parser.add_argument("--N_freq_xyz", type=int, default=10)
parser.add_argument("--N_freq_dir", type=int, default=4)
parser.add_argument("--skips", type=list, default=[4])
## params for Nerf Model
# (Obj branch)
parser.add_argument("--inst_D", type=int, default=4)
parser.add_argument("--inst_W", type=int, default=128)
parser.add_argument("--inst_skips", type=list, default=[2])
parser.add_argument("--batch_size", type=int, default=1024, help="batch size")
# parser.add_argument(
# "--chunk",
# type=int,
# default=16 * 128,
# help="chunk size to split the input to avoid OOM",
# )
parser.add_argument(
"--chunk",
type=int,
default=16 * 64,
help="chunk size to split the input to avoid OOM",
)
# parser.add_argument('--chunk', type=int, default= 32*1024,
# help='chunk size to split the input to avoid OOM')
parser.add_argument(
"--num_epochs", type=int, default=80, help="number of training epochs"
)
parser.add_argument("--num_gpus", type=int, default=1, help="number of gpus")
parser.add_argument(
"--run_max_steps", type=int, default=100000, help="number of gpus"
)
parser.add_argument(
"--ckpt_path",
type=str,
default=None,
help="pretrained checkpoint to load (including optimizers, etc)",
)
parser.add_argument(
"--is_optimize",
type=str,
default=None,
help="whether to finetune the network after training on prior data",
)
parser.add_argument(
"--prefix",
type=str,
default=None,
help="pretrained checkpoint to load (including optimizers, etc)",
)
parser.add_argument(
"--prefixes_to_ignore",
nargs="+",
type=str,
default=["loss"],
help="the prefixes to ignore in the checkpoint state dict",
)
parser.add_argument(
"--weight_path",
type=str,
default=None,
help="pretrained model weight to load (do not load optimizers, etc)",
)
#### Loss params
parser.add_argument("--color_loss_weight", type=float, default=1.0)
parser.add_argument("--depth_loss_weight", type=float, default=0.1)
parser.add_argument("--opacity_loss_weight", type=float, default=10.0)
parser.add_argument("--instance_color_loss_weight", type=float, default=1.0)
parser.add_argument("--instance_depth_loss_weight", type=float, default=1.0)
#### object-nerf optimizer params
parser.add_argument(
"--optimizer",
type=str,
default="adam",
help="optimizer type",
choices=["sgd", "adam", "radam", "ranger"],
)
# parser.add_argument('--lr', type=float, default=1.0e-3,
# help='learning rate')
parser.add_argument("--lr", type=float, default=1.0e-3, help="learning rate")
parser.add_argument("--iters", type=int, default=30000, help="iters")
# parser.add_argument('--lr', type=float, default=1.0e-4,
# help='learning rate')
parser.add_argument("--latent_lr", type=float, default=1.0e-3, help="learning rate")
parser.add_argument(
"--momentum", type=float, default=0.9, help="learning rate momentum"
)
parser.add_argument("--weight_decay", type=float, default=0, help="weight decay")
parser.add_argument(
"--lr_scheduler",
type=str,
default="poly",
help="scheduler type",
choices=["steplr", "cosine", "poly"],
)
parser.add_argument(
"--lr_scheduler_latent",
type=str,
default="poly",
help="scheduler type",
choices=["steplr", "cosine", "poly"],
)
#### params for warmup, only applied when optimizer == 'sgd' or 'adam'
parser.add_argument(
"--warmup_multiplier",
type=float,
default=1.0,
help="lr is multiplied by this factor after --warmup_epochs",
)
parser.add_argument(
"--warmup_epochs",
type=int,
default=0,
help="Gradually warm-up(increasing) learning rate in optimizer",
)
#### nerf_pl configs
# parser.add_argument('--optimizer', type=str, default='adam',
# help='optimizer type',
# choices=['sgd', 'adam', 'radam', 'ranger'])
# parser.add_argument('--lr', type=float, default=5e-4,
# help='learning rate')
# parser.add_argument('--momentum', type=float, default=0.9,
# help='learning rate momentum')
# parser.add_argument('--weight_decay', type=float, default=0,
# help='weight decay')
# parser.add_argument('--lr_scheduler', type=str, default='steplr',
# help='scheduler type',
# choices=['steplr', 'cosine', 'poly'])
# #### params for warmup, only applied when optimizer == 'sgd' or 'adam'
# parser.add_argument('--warmup_multiplier', type=float, default=1.0,
# help='lr is multiplied by this factor after --warmup_epochs')
# parser.add_argument('--warmup_epochs', type=int, default=0,
# help='Gradually warm-up(increasing) learning rate in optimizer')
###########################
#### params for steplr ####
parser.add_argument(
"--decay_step", nargs="+", type=int, default=[20], help="scheduler decay step"
)
parser.add_argument(
"--decay_gamma", type=float, default=0.1, help="learning rate decay amount"
)
###########################
#### params for poly ####
parser.add_argument(
"--poly_exp",
type=float,
default=0.99,
help="exponent for polynomial learning rate decay",
)
# parser.add_argument('--poly_exp', type=float, default=2,
# help='exponent for polynomial learning rate decay')
###########################
parser.add_argument("--exp_name", type=str, default="exp", help="experiment name")
parser.add_argument(
"--render_name", type=str, default=None, help="render directory name"
)
parser.add_argument(
"--exp_type",
type=str,
default="vanilla",
help="experiment type --choose from vanilla, pixel_nerf, pixel_nerf_sphere, groundplanar, triplanar",
)
###########################
# parser.add_argument('--ckpt_path', type=str, default='last.ckpt',
# help='ckpt path')
return parser.parse_args()