Skip to content

基于Spark的电影推荐系统,包含爬虫项目、web网站、后台管理系统以及spark推荐系统

License

Notifications You must be signed in to change notification settings

1621740748/Movie_Recommend

 
 

Repository files navigation

基于Spark的电影推荐系统

本次项目是基于大数据过滤引擎的电影推荐系统--“懂你”电影网站,包含了爬虫、电影网站(前端和后端)、后台管理系统以及推荐系统(Spark)。

image

一、爬虫

开发环境: pycharm + python3.6

软件架构: mysql + scrapy

运行环境: 本次爬取的内容在外网,所以需先翻墙后才能成功运行。

项目架构:

image

二、电影网站

开发环境: IntelliJ IDEA + maven + git + linux + powerdesigner

软件架构: mysql + mybatis + spring + springmvc

项目描述: 懂你电影推荐网站是一个基于SSM框架的web项目,类似当前比较流行的豆瓣。用户可以在网站上浏览电影信息和查询电影,并且网站会根据用户的浏览记录给用户进行实时的电影推荐。现已将网站部署在 http://115.159.204.68 网站上,感兴趣的朋友可以自行查看。Git的安装与IDEA和github的集成可以参考博客

项目架构:

image

image

三、后台管理系统

开发环境: IntelliJ IDEA + maven + git + linux + powerdesigner

软件架构: mysql + mybatis + spring + springmvc + easyui

项目描述: 后台管理系统主要对用户信息和电影信息进行管理,如添加删除电影信息和完成用户信息的完善。其中为了更好地保存电影的图片信息,搭建了图片服务器,关于图片服务器FastDFS的搭建可参考博客。后台系统也布置在服务器上,感兴趣的朋友可以通过地址 http://115.159.204.68:8080/ 访问,为大家提供的测试账号为 test,密码为88888888。

项目架构:

image

四、推荐系统(Spark)

开发环境: IntelliJ IDEA + maven + git + linux

软件架构: hadoop + zookeeper + flume + kafka + nginx + spark + hive + mysql

项目描述: 通过在电影网站系统埋点,获取到用户的点击事件(如用户喜欢哪部电影或对某部电影的评分)并将信息传至推荐系统,推荐系统根据该信息做出相应的处理,将推荐结果存入到mysql数据库中,web前端通过查询数据库将推荐的电影展示给用户。推荐流程如下:

image

项目架构:

image

具体步骤:

1.服务器规划(linux镜像为centos6):

  • spark1(ip 192.168.13.134),分配8G内存,4核
  • spark2(ip 192.168.13.135),分配6G内存,4核
  • spark3(ip 192.168.13.136),分配6G内存,4核

2.电影数据集,地址 本次下载的为1m大小的数据集

3.环境的搭建:

1)hdfs搭建

  • spark1上搭建namenode,secondary namenode,datanode
  • spark2上搭建datanode
  • spark3上搭建datanode

2)yarn搭建

  • spark1上搭建resourcemanager,nodemanager
  • spark2上搭建nodemanager
  • spark3上搭建nodemanager

3)mysql搭建,在spark2上搭建

4)hive搭建,在spark1上搭建

5)spark集群搭建,搭建standalone模式,spark1为master,其他为worker

4.数据的清洗: (上传数据至hdfs中,hdfs操作

1)启动 hdfs:  [root@spark1 ~]# start-dfs.sh

2)启动 yarn:  [root@spark1 ~]# start-yarn.sh

3)启动 mysql: [root@spark2 ~]# service mysqld start

4)启动 hive:  [root@spark1 ~]# hive --service metastore

5)启动 spark集群: [root@spark1 spark-1.6.1]# ./sbin/start-all.sh

6)代码(com.zxl.datacleaner.ETL)打包上传(spark-sql与hive集成

  • 代码位于 package com.zxl.datacleaner.ETL,打包为 ETL.jar
  • 运行代码 spark-submit --class com.zxl.datacleaner.ETL --total-executor-cores 2 --executor-memory 2g lib/ETL.jar
  • 成功于hive中建表

5.数据的加工, 根据ALS算法对数据建立模型(ALS论文)

1)启动 hdfs:  [root@spark1 ~]# start-dfs.sh

2)启动 yarn:  [root@spark1 ~]# start-yarn.sh

3)启动 mysql: [root@spark2 ~]# service mysqld start

4)启动 hive:  [root@spark1 ~]# hive --service metastore

5)启动 spark集群: [root@spark1 spark-1.6.1]# ./sbin/start-all.sh

6)代码(com.zxl.datacleaner.RatingData)打包上传,测试建立模型

6.建立模型, 根据RMSE(均方根误差)选取较好的模型

1)启动上述的服务

2)代码(com.zxl.ml.ModelTraining)打包上传,建立模型

注:com.zxl.ml.ModelTraining2中代码训练单个模型,其中参数 rank=50, iteration = 10, lambda = 0.01

  • 代码位于 package com.zxl.ml.ModelTraining,打包为 Spark_Movie.jar
  • 运行代码 spark-submit --class com.zxl.ml.ModelTraining lib/Spark_Movie.jar

7.产生推荐结果

1)启动上述的服务

2)代码(com.zxl.ml.Recommender)打包上传,产生推荐结果

8.数据入库, 存储为所有用户推荐的电影结果,mysql中存入的格式为(userid, movieid,rating)

1)启动上述的服务

2)代码(com.zxl.ml.RecommendForAllUsers)打包上传,数据入库

  • 运行代码 spark-submit --class com.zxl.ml.RecommendForAllUsers --jars lib/mysql-connector-java-5.1.35-bin.jar lib/Spark_Movie.jar

9.实时数据的发送

1)安装nginx,用来接收电影网站上用户的点击信息,写入本地文件

2)安装flume,实时监控本地文件,将数据发送至kafka消息队列中

10.实时数据的接收处理 ,如果打包到服务器运行错误,也可在本地IDEA上运行

1)安装zookeeper

2)安装kafka,用来接收发送数据

3)启动上述的服务

4)启动zookeeper:  [root@spark1 soft]# zkServer.sh start

4)启动flume:[root@spark1 flume]# bin/flume-ng agent -c ./conf/ -f conf/flume-conf.properties -Dflume.root.logger=DEBUG,console -n a1

5)启动kafka:  [root@spark1 kafka_2.11-0.10.1.0]# bin/kafka-server-start.sh config/server.properties

6)代码(com.zxl.datacleaner.PopularMovies2)运行,用于为没有登录或新用户推荐,默认推荐观看最多的5部电影

7)代码运行(需指定jar包 kafka-clients-0.10.1.0.jar)

  • spark-submit --class com.zxl.streaming.SparkDrStreamALS --total-executor-cores 2 --executor-memory 1g --jars lib/kafka-clients-0.10.1.0.jar lib/Spark_Movie.jar

About

基于Spark的电影推荐系统,包含爬虫项目、web网站、后台管理系统以及spark推荐系统

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Java 97.3%
  • Scala 2.3%
  • Other 0.4%