PES Innovation Lab's Internship 2020 Project - Air Quality Cloud Site Visualization
Presentation Link
- Intall the packages using
pip install -r requirements.txt
- Run using
flask run
gunicorn app:app --bind 0.0.0.0:8000
or
gunicorn filename:app --bind 0.0.0.0:8000
- Kibana port 5601
- Elasticsearch port 9200
- gcptest004
- 005
- 006
- 007, 008 for Demo
- loadtest101 load testing
send directly to Elasticsearch
URL: http://35.209.87.44:9200/<new device id (index name)>
Ex: http://35.209.87.44:9200/gcptest007
{
"mappings": {
"properties": {
"timestamp": {
"type": "date"
},
"location": {
"type": "geo_point"
}
}
}
}
- Create index pattern
- DO NOT select timestamp field when it asks
- Go to Visualization and choose line graph
- Y axis - Average - Field choose any 1
- Buckets - X axis - Aggregation - Date Histogram - timestamp - 5s (or anything)
- docker build --tag aqserver:1.0 .
- docker run -p 8000:8000 aqserver:1.0
- docker build --tag aqmocksensor:1.0 .
- docker run aqmocksensor:1.0
- Bash:
export ELASTICSEARCH_URL=http://192.168.1.1
- CMD:
set ELASTICSEARCH_URL=http://192.168.1.1
- PowerShell:
$env:ELASTICSEARCH_URL="http://192.168.1.1"
sudo docker run -e ELASTICSEARCH_URL='http://104.154.64.30' -p 8000:8000 srujandeshpande/aqvis-server:1.1