-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDSDHW3_RISCV.v
executable file
·597 lines (559 loc) · 18.4 KB
/
DSDHW3_RISCV.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
/// Single Cycle RISCV
//=========================================================
// Input/Output Signals:
// positive-edge triggered clk
// active low synchronous reset rst_n
// instruction memory interface IR_addr, IR
// output for testing purposes RF_writedata
//=========================================================
// Wire/Reg Specifications:
// control signals MemToReg, MemRead, MemWrite,
// RegWrite, Branch,
// Jalr, Jal, ALUSrc, ALUOp
// ALU control signals ALUctrl
// ALU output signals ALUresult, ALUzero
// instruction specifications r, jal, jalr, lw, sw, beq
// registers input signals Reg_R1, Reg_R2, Reg_W, WriteData
// immediate generated signals ImmGenOut
// registers output signals ReadData1, ReadData2
// data memory contral signals CEN, OEN, WEN
// data memory output signals ReadDataMem
// Memory address A
//=========================================================
module SingleCycle_CHIP(
clk,
rst_n,
IR_addr,
IR,
RF_writedata,
ReadDataMem,
CEN,
WEN,
A,
ReadData2,
OEN
);
//==== in/out declaration =================================
//-------- processor ----------------------------------
input clk, rst_n;
input [31:0] IR;
output [31:0] IR_addr, RF_writedata;
//-------- data memory --------------------------------
input [31:0] ReadDataMem; // read_data from memory
output CEN; // chip_enable, 0 when you read/write data from/to memory
output WEN; // write_enable, 0 when you write data into SRAM & 1 when you read data from SRAM
output [6:0] A; // address
output [31:0] ReadData2; // write_data to memory
output OEN; // output_enable, 0
//==== reg/wire declaration ===============================
// the instrcution rebuild
wire [31:0] IR_in;
// the program counter part
reg [31:0] pc_r;
wire [31:0] pc_w;
wire [31:0] pc_add_4;
wire [31:0] branch_or_jal_addr;
wire branch_or_jal_ctrl;
wire [31:0] jalr_addr;
// the control unit part
wire Jal, Jalr, Branch, MemRead, MemToReg, MemWrite, ALUSrc, RegWrite; // the control signal
Control_unit ctrl_unit(
.Opcode ( IR_in[6:0] ),
.Jal ( Jal ),
.Jalr ( Jalr ),
.Branch ( Branch ),
.MemRead ( MemRead ),
.MemToReg ( MemToReg ),
.MemWrite ( MemWrite ),
.ALUSrc ( ALUSrc ),
.RegWrite ( RegWrite )
);
// the register file part
wire [31:0] busX, busY, busW; // TODO busW...
register_file reg_file(
.clk ( clk ),
.rst_n ( rst_n ),
.WEN ( RegWrite ), // the control signal from control unit
.RW ( IR_in[11:7] ),
.busW ( busW ),
.RX ( IR_in[19:15] ),
.RY ( IR_in[24:20] ),
.busX ( busX ),
.busY ( busY )
);
// the ImmGen part
wire [31:0] imm;
ImmGen ig(
.IR ( IR_in[31:0] ),
.Imm ( imm )
);
// the alu part
wire [3:0] alu_ctrl;
wire [31:0] alu_y, alu_result;
wire alu_zero;
ALU alu(
.ctrl ( alu_ctrl ),
.x ( busX ), // the ouput of register file busX
.y ( alu_y ), // the mux ouput of imm and busY control by ALUSrc
.out ( alu_result),
.zero ( alu_zero )
);
ALU_control alu_ctrl_unit(
.Func7 ( IR_in[30] ),
.Func3 ( IR_in[14:12]),
.OP ( IR_in[4:3] ), // control signal from control unit
.ALUCtrl ( alu_ctrl )
);
//==== combinational part =================================
// the instruction rebuild
assign IR_in = {IR[7:0], IR[15:8], IR[23:16], IR[31:24] };
// the PC part
assign IR_addr = pc_r;
assign pc_add_4 = pc_r + 4;
assign branch_or_jal_addr = pc_r + imm;
assign branch_or_jal_ctrl = ((Branch & alu_zero) | Jal );
assign jalr_addr = imm + busX;
assign pc_w = ( branch_or_jal_ctrl ) ? branch_or_jal_addr :
( Jalr ) ? jalr_addr :
pc_add_4;
// the register file part...
assign busW = ( Jalr|Jal ) ? pc_add_4 :
( MemToReg ) ? {ReadDataMem[7:0], ReadDataMem[15:8], ReadDataMem[23:16], ReadDataMem[31:24]} :
alu_result;
assign RF_writedata = busW;
// the alu part...
assign alu_y = ( ALUSrc ) ? imm : busY;
// the data memory part
assign CEN = ~(MemRead|MemWrite);
assign WEN = MemRead;
assign A = alu_result[8:2];
assign ReadData2 = {busY[7:0], busY[15:8], busY[23:16], busY[31:24]};
// OEN
assign OEN = 0; // OEN is always zero in this case
//==== sequential part ====================================
always@(posedge clk or negedge rst_n) begin
if(~rst_n) begin
pc_r <= 32'b0;
end
else begin
pc_r <= pc_w;
end
end
//=========================================================
endmodule
module register_file(
clk ,
rst_n,
WEN ,
RW ,
busW ,
RX ,
RY ,
busX ,
busY
);
input clk, WEN, rst_n;
input [4:0] RW, RX, RY; // 5bit read from instruction code
input [31:0] busW;
output [31:0] busX, busY;
// write your design here, you can delcare your own wires and regs.
// The code below is just an eaxmple template
reg [31:0] r_w [0:31];
reg [31:0] r_r [0:31];
reg [31:0] busX, busY;
always@(*) begin
r_w [0] = r_r[0];
r_w [1] = r_r[1];
r_w [2] = r_r[2];
r_w [3] = r_r[3];
r_w [4] = r_r[4];
r_w [5] = r_r[5];
r_w [6] = r_r[6];
r_w [7] = r_r[7];
r_w [8] = r_r[8];
r_w [9] = r_r[9];
r_w [10] = r_r[10];
r_w [11] = r_r[11];
r_w [12] = r_r[12];
r_w [13] = r_r[13];
r_w [14] = r_r[14];
r_w [15] = r_r[15];
r_w [16] = r_r[16];
r_w [17] = r_r[17];
r_w [18] = r_r[18];
r_w [19] = r_r[19];
r_w [20] = r_r[20];
r_w [21] = r_r[21];
r_w [22] = r_r[22];
r_w [23] = r_r[23];
r_w [24] = r_r[24];
r_w [25] = r_r[25];
r_w [26] = r_r[26];
r_w [27] = r_r[27];
r_w [28] = r_r[28];
r_w [29] = r_r[29];
r_w [30] = r_r[30];
r_w [31] = r_r[31];
if (WEN) begin
case (RW)
5'd0 : r_w [0] = 32'b0;
5'd1 : r_w [1] = busW;
5'd2 : r_w [2] = busW;
5'd3 : r_w [3] = busW;
5'd4 : r_w [4] = busW;
5'd5 : r_w [5] = busW;
5'd6 : r_w [6] = busW;
5'd7 : r_w [7] = busW;
5'd8 : r_w [8] = busW;
5'd9 : r_w [9] = busW;
5'd10 : r_w [10] = busW;
5'd11 : r_w [11] = busW;
5'd12 : r_w [12] = busW;
5'd13 : r_w [13] = busW;
5'd14 : r_w [14] = busW;
5'd15 : r_w [15] = busW;
5'd16 : r_w [16] = busW;
5'd17 : r_w [17] = busW;
5'd18 : r_w [18] = busW;
5'd19 : r_w [19] = busW;
5'd20 : r_w [20] = busW;
5'd21 : r_w [21] = busW;
5'd22 : r_w [22] = busW;
5'd23 : r_w [23] = busW;
5'd24 : r_w [24] = busW;
5'd25 : r_w [25] = busW;
5'd26 : r_w [26] = busW;
5'd27 : r_w [27] = busW;
5'd28 : r_w [28] = busW;
5'd29 : r_w [29] = busW;
5'd30 : r_w [30] = busW;
5'd31 : r_w [31] = busW;
endcase
end
else begin
r_w [0] = r_r[0];
r_w [1] = r_r[1];
r_w [2] = r_r[2];
r_w [3] = r_r[3];
r_w [4] = r_r[4];
r_w [5] = r_r[5];
r_w [6] = r_r[6];
r_w [7] = r_r[7];
r_w [8] = r_r[8];
r_w [9] = r_r[9];
r_w [10] = r_r[10];
r_w [11] = r_r[11];
r_w [12] = r_r[12];
r_w [13] = r_r[13];
r_w [14] = r_r[14];
r_w [15] = r_r[15];
r_w [16] = r_r[16];
r_w [17] = r_r[17];
r_w [18] = r_r[18];
r_w [19] = r_r[19];
r_w [20] = r_r[20];
r_w [21] = r_r[21];
r_w [22] = r_r[22];
r_w [23] = r_r[23];
r_w [24] = r_r[24];
r_w [25] = r_r[25];
r_w [26] = r_r[26];
r_w [27] = r_r[27];
r_w [28] = r_r[28];
r_w [29] = r_r[29];
r_w [30] = r_r[30];
r_w [31] = r_r[31];
end
case (RX)
5'd0 : busX = 32'b0;
5'd1 : busX = r_r[1];
5'd2 : busX = r_r[2];
5'd3 : busX = r_r[3];
5'd4 : busX = r_r[4];
5'd5 : busX = r_r[5];
5'd6 : busX = r_r[6];
5'd7 : busX = r_r[7];
5'd8 : busX = r_r[8];
5'd9 : busX = r_r[9];
5'd10 : busX = r_r[10];
5'd11 : busX = r_r[11];
5'd12 : busX = r_r[12];
5'd13 : busX = r_r[13];
5'd14 : busX = r_r[14];
5'd15 : busX = r_r[15];
5'd16 : busX = r_r[16];
5'd17 : busX = r_r[17];
5'd18 : busX = r_r[18];
5'd19 : busX = r_r[19];
5'd20 : busX = r_r[20];
5'd21 : busX = r_r[21];
5'd22 : busX = r_r[22];
5'd23 : busX = r_r[23];
5'd24 : busX = r_r[24];
5'd25 : busX = r_r[25];
5'd26 : busX = r_r[26];
5'd27 : busX = r_r[27];
5'd28 : busX = r_r[28];
5'd29 : busX = r_r[29];
5'd30 : busX = r_r[30];
5'd31 : busX = r_r[31];
endcase
case (RY)
5'd0 : busY = 32'b0;
5'd1 : busY = r_r[1];
5'd2 : busY = r_r[2];
5'd3 : busY = r_r[3];
5'd4 : busY = r_r[4];
5'd5 : busY = r_r[5];
5'd6 : busY = r_r[6];
5'd7 : busY = r_r[7];
5'd8 : busY = r_r[8];
5'd9 : busY = r_r[9];
5'd10 : busY = r_r[10];
5'd11 : busY = r_r[11];
5'd12 : busY = r_r[12];
5'd13 : busY = r_r[13];
5'd14 : busY = r_r[14];
5'd15 : busY = r_r[15];
5'd16 : busY = r_r[16];
5'd17 : busY = r_r[17];
5'd18 : busY = r_r[18];
5'd19 : busY = r_r[19];
5'd20 : busY = r_r[20];
5'd21 : busY = r_r[21];
5'd22 : busY = r_r[22];
5'd23 : busY = r_r[23];
5'd24 : busY = r_r[24];
5'd25 : busY = r_r[25];
5'd26 : busY = r_r[26];
5'd27 : busY = r_r[27];
5'd28 : busY = r_r[28];
5'd29 : busY = r_r[29];
5'd30 : busY = r_r[30];
5'd31 : busY = r_r[31];
endcase
end
always@(posedge clk or negedge rst_n) begin
if(!rst_n) begin
r_r [0] <= 32'b0;
r_r [1] <= 32'b0;
r_r [2] <= 32'b0;
r_r [3] <= 32'b0;
r_r [4] <= 32'b0;
r_r [5] <= 32'b0;
r_r [6] <= 32'b0;
r_r [7] <= 32'b0;
r_r [8] <= 32'b0;
r_r [9] <= 32'b0;
r_r [10] <= 32'b0;
r_r [11] <= 32'b0;
r_r [12] <= 32'b0;
r_r [13] <= 32'b0;
r_r [14] <= 32'b0;
r_r [15] <= 32'b0;
r_r [16] <= 32'b0;
r_r [17] <= 32'b0;
r_r [18] <= 32'b0;
r_r [19] <= 32'b0;
r_r [20] <= 32'b0;
r_r [21] <= 32'b0;
r_r [22] <= 32'b0;
r_r [23] <= 32'b0;
r_r [24] <= 32'b0;
r_r [25] <= 32'b0;
r_r [26] <= 32'b0;
r_r [27] <= 32'b0;
r_r [28] <= 32'b0;
r_r [29] <= 32'b0;
r_r [30] <= 32'b0;
r_r [31] <= 32'b0;
end
else begin
r_r [0] <= 32'b0;
r_r [1] <= r_w[1];
r_r [2] <= r_w[2];
r_r [3] <= r_w[3];
r_r [4] <= r_w[4];
r_r [5] <= r_w[5];
r_r [6] <= r_w[6];
r_r [7] <= r_w[7];
r_r [8] <= r_w[8];
r_r [9] <= r_w[9];
r_r [10] <= r_w[10];
r_r [11] <= r_w[11];
r_r [12] <= r_w[12];
r_r [13] <= r_w[13];
r_r [14] <= r_w[14];
r_r [15] <= r_w[15];
r_r [16] <= r_w[16];
r_r [17] <= r_w[17];
r_r [18] <= r_w[18];
r_r [19] <= r_w[19];
r_r [20] <= r_w[20];
r_r [21] <= r_w[21];
r_r [22] <= r_w[22];
r_r [23] <= r_w[23];
r_r [24] <= r_w[24];
r_r [25] <= r_w[25];
r_r [26] <= r_w[26];
r_r [27] <= r_w[27];
r_r [28] <= r_w[28];
r_r [29] <= r_w[29];
r_r [30] <= r_w[30];
r_r [31] <= r_w[31];
end
end
endmodule
module ALU (
ctrl,
x,
y,
out,
zero
);
input [3:0] ctrl; // the contral signal which decide the operation of alu
input [31:0] x, y; // 32 bit input data from register file or instruction[15:0]
output [31:0] out; // 32 bit output
output zero; // check the overflow
reg [31:0] out;
wire [32:0] sub_result;
assign sub_result = x + ~y + 1;
assign zero = ~(|sub_result[31:0]); // $$$ check if error
always@(*) begin
case ( ctrl )
4'b0000: out = x & y; // AND
4'b0001: out = x | y; // OR
4'b0010: out = x + y; // ADD
4'b0110: out = sub_result; // SUB
4'b1000: out = (sub_result[32]) ? 32'd1 : 32'b0; // set on less than
default: out = 32'b0;
endcase
end
endmodule
module ImmGen(
IR,
Imm
);
input [31:0] IR; // instruction from instruction memory
output [31:0] Imm;
reg [31:0] Imm;
always@(*) begin
case (IR[6:2])
5'b00000: Imm = {{21{IR[31]}},IR[30:25],IR[24:21],IR[20]}; // lw I-type
5'b01000: Imm = {{21{IR[31]}},IR[30:25],IR[11:8],IR[7]}; // sw S-type
5'b11000: Imm = {{20{IR[31]}}, IR[7], IR[30:25], IR[11:8], 1'b0}; // beq B-type
5'b11011: Imm = {{12{IR[31]}}, IR[19:12], IR[20], IR[30:25], IR[24:21], 1'b0}; // jal J-type
5'b11001: Imm = {{21{IR[31]}},IR[30:25],IR[24:21],IR[20]}; // jalr I-type
default: Imm = 32'b0;
endcase
end
endmodule
module ALU_control(
Func7,
Func3,
OP,
ALUCtrl
);
input Func7;
input [2:0] Func3;
input [1:0] OP;
output [3:0] ALUCtrl;
assign ALUCtrl[0] = (OP[1] & Func3[2] & Func3[1] & (~Func3[0]));
assign ALUCtrl[1] = ~(OP[1]&(~OP[0])&Func3[1]);
assign ALUCtrl[2] = ( ((~OP[1])&(~Func3[1])) | (Func7 & OP[1]) );
assign ALUCtrl[3] = ( OP[1] & (~Func3[2]) & Func3[1] );
endmodule
module Control_unit(
Opcode,
Jal,
Jalr,
Branch,
MemRead,
MemToReg,
MemWrite,
ALUSrc,
RegWrite
);
input [6:0] Opcode;
output reg Jal, Jalr, Branch, MemRead, MemToReg, MemWrite, ALUSrc, RegWrite;
always@(*) begin
case ( Opcode )
7'b0110011: begin
// R-type
Jal = 1'b0;
Jalr = 1'b0;
Branch = 1'b0;
MemRead = 1'b0;
MemToReg = 1'b0;
MemWrite = 1'b0;
ALUSrc = 1'b0;
RegWrite = 1'b1;
end
7'b0000011: begin
// lw
Jal = 1'b0;
Jalr = 1'b0;
Branch = 1'b0;
MemRead = 1'b1;
MemToReg = 1'b1;
MemWrite = 1'b0;
ALUSrc = 1'b1;
RegWrite = 1'b1;
end
7'b0100011: begin
// sw
Jal = 1'b0;
Jalr = 1'b0;
Branch = 1'b0;
MemRead = 1'b0;
MemToReg = 1'b0;
MemWrite = 1'b1;
ALUSrc = 1'b1;
RegWrite = 1'b0;
end
7'b1100011: begin
// beq
Jal = 1'b0;
Jalr = 1'b0;
Branch = 1'b1;
MemRead = 1'b0;
MemToReg = 1'b0;
MemWrite = 1'b0;
ALUSrc = 1'b0;
RegWrite = 1'b0;
end
7'b1101111: begin
// jal
Jal = 1'b1;
Jalr = 1'b0;
Branch = 1'b0;
MemRead = 1'b0;
MemToReg = 1'b0;
MemWrite = 1'b0;
ALUSrc = 1'b0;
RegWrite = 1'b1;
end
7'b1100111: begin
// jalr
Jal = 1'b0;
Jalr = 1'b1;
Branch = 1'b0;
MemRead = 1'b0;
MemToReg = 1'b0;
MemWrite = 1'b0;
ALUSrc = 1'b0;
RegWrite = 1'b1;
end
default: begin
Jal = 1'b0;
Jalr = 1'b0;
Branch = 1'b0;
MemRead = 1'b0;
MemToReg = 1'b0;
MemWrite = 1'b0;
ALUSrc = 1'b0;
RegWrite = 1'b0;
end
endcase
end
endmodule