-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRISCV_hasHazard.v
979 lines (891 loc) · 33 KB
/
RISCV_hasHazard.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
// Five Stage pilpeline RISCV CPU
module RISCV_Pipeline(
// control interface
clk,
rst_n,
//----------I cache interface-------
ICACHE_ren ,
ICACHE_addr ,
ICACHE_stall ,
ICACHE_rdata ,
//----------D cache interface-------
DCACHE_ren ,
DCACHE_wen ,
DCACHE_addr ,
DCACHE_wdata ,
DCACHE_stall ,
DCACHE_rdata
);
//==== I/O Definition ====================
// control interface ---------------
input clk;
input rst_n;
//----------I cache interface-------
output ICACHE_ren;
output [29:0] ICACHE_addr;
input ICACHE_stall;
input [31:0] ICACHE_rdata;
//----------D cache interface-------
output DCACHE_ren;
output DCACHE_wen;
output [29:0] DCACHE_addr;
output [31:0] DCACHE_wdata;
input DCACHE_stall;
input [31:0] DCACHE_rdata;
//==== Pipeline Register Definition =====
//---- IF/ID ------------------------
wire [31:0] IFID_pc_addr_w;
wire [31:0] IFID_inst_w;
reg [31:0] IFID_pc_addr_r;
reg [31:0] IFID_inst_r;
//---- ID/EX ------------------------
//WB regwrite, memToreg
wire regwrite;
wire memtoreg;
wire IDEX_RegWrite_w;
wire IDEX_MemToReg_w;
reg IDEX_RegWrite_r;
reg IDEX_MemToReg_r;
//M jal, jalr, branch, memread, memwrite
wire jal;
wire jalr;
wire branch;
wire memread;
wire memwrite;
//wire IDEX_jal_w;
//wire IDEX_jalr_w;
//wire IDEX_branch_w;
wire IDEX_MemRead_w;
wire IDEX_MemWrite_w;
wire IDEX_jump_w;
//reg IDEX_jal_r;
//reg IDEX_jalr_r;
//reg IDEX_branch_r;
reg IDEX_MemRead_r;
reg IDEX_MemWrite_r;
reg IDEX_jump_r;
//EX aluop, alusrc
wire [1:0] aluop;
wire alusrc;
wire [1:0] IDEX_aluop_w;
wire IDEX_alusrc_w;
reg [4:0] IDEX_rs1_r;
reg [4:0] IDEX_rs2_r;
wire [4:0] IDEX_rs1_w;
wire [4:0] IDEX_rs2_w;
wire [31:0] IDEX_pc_addr_w;
wire [31:0] IDEX_rdata1_w;
wire [31:0] IDEX_rdata2_w;
reg [1:0] IDEX_aluop_r;
reg IDEX_alusrc_r;
reg [31:0] IDEX_pc_addr_r;
reg [31:0] IDEX_rdata1_r;
reg [31:0] IDEX_rdata2_r;
// other data
wire [31:0] IDEX_imm_w;
wire IDEX_func7_w;
wire [2:0] IDEX_func3_w;
wire [4:0] IDEX_rd_addr_w;
reg [31:0] IDEX_imm_r;
reg IDEX_func7_r;
reg [2:0] IDEX_func3_r;
reg [4:0] IDEX_rd_addr_r;
//---- EX/MEM -----------------------
//WB regwrite, memToreg
wire EXMEM_RegWrite_w;
wire EXMEM_MemToReg_w;
reg EXMEM_RegWrite_r;
reg EXMEM_MemToReg_r;
//M jal, jalr, branch, memread, memwrite
//wire EXMEM_jal_w;
//wire EXMEM_jalr_w;
//wire EXMEM_branch_w;
wire EXMEM_jump_w;
wire EXMEM_MemRead_w;
wire EXMEM_MemWrite_w;
//reg EXMEM_jal_r;
//reg EXMEM_jalr_r;
//reg EXMEM_branch_r;
reg EXMEM_MemRead_r;
reg EXMEM_MemWrite_r;
reg EXMEM_jump_r;
// pc addr
//wire [29:0] EXMEM_jalr_addr_w;
//wire [29:0] EXMEM_branch_or_jal_addr_w;
// reg [29:0] EXMEM_jalr_addr_r;
// reg [29:0] EXMEM_branch_or_jal_addr_r;
// alu result
wire [31:0] EXMEM_alu_out_w;
// wire EXMEM_alu_zero_w;
wire [31:0] EXMEM_wdata_w;
reg [31:0] EXMEM_alu_out_r;
// reg EXMEM_alu_zero_r;
reg [31:0] EXMEM_wdata_r;
// rd_addr
wire [4:0] EXMEM_rd_addr_w;
reg [4:0] EXMEM_rd_addr_r;
// for jal, jalr
wire [31:0] EXMEM_pc_add4_w;
reg [31:0] EXMEM_pc_add4_r;
wire [3:0] alu_ctrl;
//---- MEM/WB -----------------------
//WB regwrite, memToreg
wire MEMWB_RegWrite_w;
wire MEMWB_MemToReg_w;
reg MEMWB_RegWrite_r;
reg MEMWB_MemToReg_r;
// alu result
wire [31:0] MEMWB_alu_out_w;
wire [31:0] MEMWB_rdata_w;
reg [31:0] MEMWB_alu_out_r;
reg [31:0] MEMWB_rdata_r;
// rd_addr
wire [4:0] MEMWB_rd_addr_w;
reg [4:0] MEMWB_rd_addr_r;
// for jal, jalr
wire [31:0] MEMWB_pc_add4_w;
reg [31:0] MEMWB_pc_add4_r;
//wire MEMWB_jal_w;
//reg MEMWB_jal_r;
//wire MEMWB_jalr_w;
//reg MEMWB_jalr_r;
//---- Hazard detection ----------
wire hazard_stall;
wire [1:0] forward_a_ex; //ex stage
wire [1:0] forward_b_ex;
wire [1:0] forward_a_id; //id stage
wire [1:0] forward_b_id;
// choose data from forwarding unit
wire [31:0] forwarding_x;
wire [31:0] forwarding_y;
//==== BRANCH/JUMP in ID stage =============================
// its new !!
wire [31:0] busX;
wire [31:0] wdata;
wire [31:0] ID_jal_or_branch_addr;
wire [31:0] ID_jalr_addr[0:2];
wire [31:0] ID_real_jalr_addr;
wire ID_beq;
wire ID_branch_jump;
//wire ID_jump;
assign ID_real_jalr_addr = (forward_a_id[1]) ? ID_jalr_addr[1] :
(forward_a_id[0]) ? ID_jalr_addr[2] :
ID_jalr_addr[0] ;
assign ID_beq = (IDEX_rdata1_w == IDEX_rdata2_w);
assign ID_branch_jump = ((ID_beq ^ IFID_inst_r[12]) && IFID_inst_r[6] && (~IFID_inst_r[2]));
assign IDEX_jump_w = (jal|jalr);
ID_jump id_jump(
.pc ( IFID_pc_addr_r),
.offset ( IDEX_imm_w ),
.rdata1 ( busX ),
.forward_data1 ( EXMEM_alu_out_r ),
.forward_data2 ( wdata),
.jal_or_branch_addr (ID_jal_or_branch_addr),
.jalr_addr1 (ID_jalr_addr[0]),
.jalr_addr2 (ID_jalr_addr[1]),
.jalr_addr3 (ID_jalr_addr[2])
);
wire bubble;
EX_to_ID_bubble bubble_unit(
.IDEX_rd_addr ( IDEX_rd_addr_r),
.IFID_rs1 (IFID_inst_r[19:15]),
.IFID_rs2 (IFID_inst_r[24:20]),
.IDEX_regWrite (IDEX_RegWrite_r),
.ID_branch_or_jalr( jalr|branch),
.Bubble ( bubble)
);
//========================================================================================
//==== PC =============================
//TODO
//wire [31:0] pc_w_no_hazard;
wire [31:0] pc_w;
wire [31:0] pc_add4;
reg [31:0] pc_r;
//==== Connect the Circuit ============
// PC
assign pc_add4 = pc_r + 4 ;
assign pc_w = (hazard_stall|bubble) ? pc_r :
(jal|ID_branch_jump) ? ID_jal_or_branch_addr :
(jalr) ? ID_real_jalr_addr :
pc_add4;
//wire branch_flush; //judge if branch, if so, flush the following instrction
//wire j_flush;
//assign j_flush = ( IDEX_jal_r | IDEX_jalr_r );
// decide next pc
//assign pc_w_no_hazard = ( IDEX_jal_r | branch_flush ) ? EXMEM_branch_or_jal_addr_w:
// ( IDEX_jalr_r ) ? EXMEM_jalr_addr_w:
// pc_r + 4;
//assign pc_w = (hazard_stall)? pc_r: pc_w_no_hazard;
// ID stage
//TODO...
assign wdata = (MEMWB_MemToReg_r) ? MEMWB_rdata_r:
MEMWB_alu_out_r;
wire [31:0] busY;
register_file reg_file(
.clk ( clk ) ,
.rst_n ( rst_n ) ,
.WEN ( MEMWB_RegWrite_r ) ,
.RW ( MEMWB_rd_addr_r ) ,
.busW ( wdata ) ,
.RX ( IFID_inst_r[19:15] ) ,
.RY ( IFID_inst_r[24:20] ) ,
.busX ( busX ) ,
.busY ( busY )
);
// forwarding ( only forward WB stage )
assign IDEX_rdata1_w = (forward_a_id[1]) ? EXMEM_alu_out_r :
(forward_a_id[0]) ? wdata :
busX ;
assign IDEX_rdata2_w = (forward_b_id[1])? EXMEM_alu_out_r :
(forward_b_id[0])? wdata :
busY ;
// check branch at EX stage
ImmGen ig(
.IR( IFID_inst_r[31:0] ) ,
.Imm( IDEX_imm_w )
);
Control_unit ctrl_unit(
.Opcode ( IFID_inst_r[6:2] ) ,
.Jal ( jal ) ,
.Jalr ( jalr ) ,
.Branch ( branch ) ,
.MemRead ( memread ) ,
.MemToReg ( memtoreg ) ,
.MemWrite ( memwrite ) ,
.ALUSrc ( alusrc ) ,
.RegWrite ( regwrite ) ,
.ALUop ( aluop )
);
// control unit dealing hazard
// 0 when flush or bubble
// TODO...
// assign IDEX_jal_w = ( j_flush | branch_flush | hazard_stall )? 1'b0: jal;
// assign IDEX_jalr_w = ( j_flush | branch_flush | hazard_stall )? 1'b0: jalr;
// assign IDEX_branch_w = ( j_flush | branch_flush | hazard_stall )? 1'b0: branch;
assign IDEX_MemRead_w = ( hazard_stall |bubble)? 1'b0: memread;
assign IDEX_MemToReg_w = ( hazard_stall |bubble)? 1'b0: memtoreg;
assign IDEX_MemWrite_w = ( hazard_stall |bubble)? 1'b0: memwrite;
assign IDEX_alusrc_w = ( hazard_stall |bubble)? 1'b0: alusrc;
assign IDEX_RegWrite_w = ( hazard_stall |bubble)? 1'b0: regwrite;
assign IDEX_aluop_w = ( hazard_stall |bubble)? 2'b0: aluop;
assign IDEX_pc_addr_w = IFID_pc_addr_r;
assign IDEX_func3_w = IFID_inst_r[14:12];
assign IDEX_func7_w = IFID_inst_r[30];
assign IDEX_rd_addr_w = IFID_inst_r[11:7];
assign IDEX_rs1_w = IFID_inst_r[19:15];
assign IDEX_rs2_w = IFID_inst_r[24:20];
// EX stage
// if jump, flush ex stage
assign EXMEM_RegWrite_w = IDEX_RegWrite_r;
assign EXMEM_MemToReg_w = IDEX_MemToReg_r;
//assign EXMEM_jal_w = IDEX_jal_r;
//assign EXMEM_jalr_w = IDEX_jalr_r;
//assign EXMEM_branch_w = IDEX_branch_r;
assign EXMEM_jump_w = IDEX_jump_r;
assign EXMEM_MemRead_w = IDEX_MemRead_r;
assign EXMEM_MemWrite_w = IDEX_MemWrite_r;
// assign EXMEM_jalr_addr_w = IDEX_imm_r + forwarding_x; //alu_in_x is forwarding data1, which is the address jalr will go
//assign EXMEM_branch_or_jal_addr_w = IDEX_imm_r + IDEX_pc_addr_r;
//assign EXMEM_jalr_addr_w = (forward_a_ex[1])? IDEX_imm_r + EXMEM_alu_out_r:
// (forward_a_ex[0])? IDEX_imm_r + wdata :
// IDEX_imm_r + IDEX_rdata1_r ;
assign EXMEM_wdata_w = {forwarding_y[7:0], forwarding_y[15:8], forwarding_y[23:16], forwarding_y[31:24] };
assign EXMEM_rd_addr_w = IDEX_rd_addr_r;
assign EXMEM_pc_add4_w = IDEX_pc_addr_r + 4;
wire [31:0] alu_in_y;
assign forwarding_x = (forward_a_ex[1]) ? EXMEM_alu_out_r:
(forward_a_ex[0]) ? wdata :
IDEX_rdata1_r;
assign alu_in_y = (IDEX_alusrc_r) ? IDEX_imm_r: forwarding_y;
assign forwarding_y = (forward_b_ex[1]) ? EXMEM_alu_out_r:
(forward_b_ex[0]) ? wdata :
IDEX_rdata2_r;
ALU alu(
.ctrl ( alu_ctrl ) ,
.x ( forwarding_x ) ,
.y ( alu_in_y ) ,
.out ( EXMEM_alu_out_w )
// .zero ( EXMEM_alu_zero_w )
);
ALU_control alu_control(
.Func7 ( IDEX_func7_r ) ,
.Func3 ( IDEX_func3_r ) ,
.OP ( IDEX_aluop_r ) ,
.ALUCtrl( alu_ctrl )
);
// MEM stage
assign MEMWB_RegWrite_w = EXMEM_RegWrite_r;
assign MEMWB_MemToReg_w = EXMEM_MemToReg_r;
assign MEMWB_alu_out_w = (EXMEM_jump_r) ? EXMEM_pc_add4_r: EXMEM_alu_out_r;
assign DCACHE_ren = EXMEM_MemRead_r;
assign DCACHE_wen = EXMEM_MemWrite_r;
assign DCACHE_addr = EXMEM_alu_out_r[31:2];
assign DCACHE_wdata = EXMEM_wdata_r;
assign MEMWB_rdata_w = { DCACHE_rdata[7:0], DCACHE_rdata[15:8], DCACHE_rdata[23:16], DCACHE_rdata[31:24] };
assign MEMWB_rd_addr_w = EXMEM_rd_addr_r;
assign MEMWB_pc_add4_w = EXMEM_pc_add4_r;
//assign MEMWB_jal_w = EXMEM_jal_r;
//assign MEMWB_jalr_w = EXMEM_jalr_r;
assign ICACHE_addr = pc_r[31:2];
// TODO...
assign IFID_inst_w = (hazard_stall|bubble)? IFID_inst_r :
(ID_branch_jump|IDEX_jump_w) ? 32'h0000007f : // flush control unit (bubble)
{ ICACHE_rdata[7:0], ICACHE_rdata[15:8], ICACHE_rdata[23:16], ICACHE_rdata[31:24] };
assign IFID_pc_addr_w = (hazard_stall|bubble) ? IFID_pc_addr_r :pc_r;
// proc_stall
wire proc_stall;
assign proc_stall = (DCACHE_stall|ICACHE_stall);
// dealing hazard problem
HAZARD_DETECTION_UNIT h(
.IDEX_RT(IDEX_rd_addr_r),
.IFID_RS(IFID_inst_r[19:15]),
.IFID_RT(IFID_inst_r[24:20]),
.MemRead(IDEX_MemRead_r),
.stall(hazard_stall)
);
// forward data to ID / EX stage
FORWARDING_UNIT ex(
.EXMEM_RD(EXMEM_rd_addr_r),
.IDEX_RS1(IDEX_rs1_r),
.IDEX_RS2(IDEX_rs2_r),
.IFID_RS1(IFID_inst_r[19:15]),
.IFID_RS2(IFID_inst_r[24:20]),
.MEMWB_RD(MEMWB_rd_addr_r),
.EXMEM_RegWrite(EXMEM_RegWrite_r),
.MEMWB_RegWrite(MEMWB_RegWrite_r),
.FORWARD_A_ex(forward_a_ex),
.FORWARD_B_ex(forward_b_ex),
.FORWARD_A_id(forward_a_id),
.FORWARD_B_id(forward_b_id)
);
always@(posedge clk or negedge rst_n) begin
if(~rst_n) begin
// reset the circuit
pc_r <= 0;
IFID_pc_addr_r <= 0;
IFID_inst_r <= 32'h00000013; //nop;
IDEX_RegWrite_r <= 0;
IDEX_MemToReg_r <= 0;
//IDEX_jal_r <= 0;
//IDEX_jalr_r <= 0;
//IDEX_branch_r <= 0;
IDEX_jump_r <= 0;
IDEX_MemRead_r <= 0;
IDEX_MemWrite_r <= 0;
IDEX_aluop_r <= 0;
IDEX_alusrc_r <= 0;
IDEX_pc_addr_r <= 0;
IDEX_rs1_r <= 0;
IDEX_rs2_r <= 0;
IDEX_rdata1_r <= 0;
IDEX_rdata2_r <= 0;
IDEX_imm_r <= 0;
IDEX_func7_r <= 0;
IDEX_func3_r <= 0;
IDEX_rd_addr_r <= 0;
EXMEM_RegWrite_r <= 0;
EXMEM_MemToReg_r <= 0;
//EXMEM_jal_r <= 0;
//EXMEM_jalr_r <= 0;
//EXMEM_branch_r <= 0;
EXMEM_jump_r <= 0;
EXMEM_MemRead_r <= 0;
EXMEM_MemWrite_r <= 0;
// EXMEM_jalr_addr_r <= 0;
// EXMEM_branch_or_jal_addr_r <= 0;
EXMEM_alu_out_r <= 0;
// EXMEM_alu_zero_r <= 0;
EXMEM_wdata_r <= 0;
EXMEM_rd_addr_r <= 0;
EXMEM_pc_add4_r <= 0;
MEMWB_RegWrite_r <= 0;
MEMWB_MemToReg_r <= 0;
MEMWB_alu_out_r <= 0;
MEMWB_rdata_r <= 0;
MEMWB_rd_addr_r <= 0;
MEMWB_pc_add4_r <= 0;
//MEMWB_jal_r <= 0;
//MEMWB_jalr_r <= 0;
end
else begin
if(~proc_stall) begin
pc_r <= pc_w;
IFID_pc_addr_r <= IFID_pc_addr_w;
IFID_inst_r <= IFID_inst_w;
IDEX_RegWrite_r <= IDEX_RegWrite_w;
IDEX_MemToReg_r <= IDEX_MemToReg_w;
//IDEX_jal_r <= IDEX_jal_w;
//IDEX_jalr_r <= IDEX_jalr_w;
//IDEX_branch_r <= IDEX_branch_w;
IDEX_jump_r <= IDEX_jump_w;
IDEX_MemRead_r <= IDEX_MemRead_w;
IDEX_MemWrite_r <= IDEX_MemWrite_w;
IDEX_aluop_r <= IDEX_aluop_w;
IDEX_alusrc_r <= IDEX_alusrc_w;
IDEX_pc_addr_r <= IDEX_pc_addr_w;
IDEX_rs2_r <= IDEX_rs2_w;
IDEX_rs1_r <= IDEX_rs1_w;
IDEX_rdata1_r <= IDEX_rdata1_w;
IDEX_rdata2_r <= IDEX_rdata2_w;
IDEX_imm_r <= IDEX_imm_w;
IDEX_func7_r <= IDEX_func7_w;
IDEX_func3_r <= IDEX_func3_w;
IDEX_rd_addr_r <= IDEX_rd_addr_w;
EXMEM_RegWrite_r <= EXMEM_RegWrite_w;
EXMEM_MemToReg_r <= EXMEM_MemToReg_w;
//EXMEM_jal_r <= EXMEM_jal_w;
//EXMEM_jalr_r <= EXMEM_jalr_w;
//EXMEM_branch_r <= EXMEM_branch_w;
EXMEM_jump_r <= EXMEM_jump_w;
EXMEM_MemRead_r <= EXMEM_MemRead_w;
EXMEM_MemWrite_r <= EXMEM_MemWrite_w;
// EXMEM_jalr_addr_r <= EXMEM_jalr_addr_w;
// EXMEM_branch_or_jal_addr_r <= EXMEM_branch_or_jal_addr_w;
EXMEM_alu_out_r <= EXMEM_alu_out_w;
// EXMEM_alu_zero_r <= EXMEM_alu_zero_w;
EXMEM_wdata_r <= EXMEM_wdata_w;
EXMEM_rd_addr_r <= EXMEM_rd_addr_w;
EXMEM_pc_add4_r <= EXMEM_pc_add4_w;
MEMWB_RegWrite_r <= MEMWB_RegWrite_w;
MEMWB_MemToReg_r <= MEMWB_MemToReg_w;
MEMWB_alu_out_r <= MEMWB_alu_out_w;
MEMWB_rdata_r <= MEMWB_rdata_w;
MEMWB_rd_addr_r <= MEMWB_rd_addr_w;
MEMWB_pc_add4_r <= MEMWB_pc_add4_w;
//MEMWB_jal_r <= MEMWB_jal_w;
//MEMWB_jalr_r <= MEMWB_jalr_w;
end
end
end
endmodule
//===================================================
//= Register File =
//===================================================
module register_file(
clk ,
rst_n,
WEN ,
RW ,
busW ,
RX ,
RY ,
busX ,
busY
);
input clk, WEN, rst_n;
input [4:0] RW, RX, RY; // 5bit read from instruction code
input [31:0] busW;
output [31:0] busX, busY;
// write your design here, you can delcare your own wires and regs.
// The code below is just an eaxmple template
reg [31:0] r_w [0:31];
reg [31:0] r_r [0:31];
reg [31:0] busX, busY;
integer i;
always@(*) begin
for(i=0; i<32; i = i+1) begin
r_w[i] = r_r[i];
end
if (WEN) begin
case (RW)
5'd0 : r_w [0] = 32'b0;
5'd1 : r_w [1] = busW;
5'd2 : r_w [2] = busW;
5'd3 : r_w [3] = busW;
5'd4 : r_w [4] = busW;
5'd5 : r_w [5] = busW;
5'd6 : r_w [6] = busW;
5'd7 : r_w [7] = busW;
5'd8 : r_w [8] = busW;
5'd9 : r_w [9] = busW;
5'd10 : r_w [10] = busW;
5'd11 : r_w [11] = busW;
5'd12 : r_w [12] = busW;
5'd13 : r_w [13] = busW;
5'd14 : r_w [14] = busW;
5'd15 : r_w [15] = busW;
5'd16 : r_w [16] = busW;
5'd17 : r_w [17] = busW;
5'd18 : r_w [18] = busW;
5'd19 : r_w [19] = busW;
5'd20 : r_w [20] = busW;
5'd21 : r_w [21] = busW;
5'd22 : r_w [22] = busW;
5'd23 : r_w [23] = busW;
5'd24 : r_w [24] = busW;
5'd25 : r_w [25] = busW;
5'd26 : r_w [26] = busW;
5'd27 : r_w [27] = busW;
5'd28 : r_w [28] = busW;
5'd29 : r_w [29] = busW;
5'd30 : r_w [30] = busW;
5'd31 : r_w [31] = busW;
endcase
end
else begin
for(i=0; i<32; i = i+1) begin
r_w[i] = r_r[i];
end
end
case (RX)
5'd0 : busX = 32'b0;
5'd1 : busX = r_r[1];
5'd2 : busX = r_r[2];
5'd3 : busX = r_r[3];
5'd4 : busX = r_r[4];
5'd5 : busX = r_r[5];
5'd6 : busX = r_r[6];
5'd7 : busX = r_r[7];
5'd8 : busX = r_r[8];
5'd9 : busX = r_r[9];
5'd10 : busX = r_r[10];
5'd11 : busX = r_r[11];
5'd12 : busX = r_r[12];
5'd13 : busX = r_r[13];
5'd14 : busX = r_r[14];
5'd15 : busX = r_r[15];
5'd16 : busX = r_r[16];
5'd17 : busX = r_r[17];
5'd18 : busX = r_r[18];
5'd19 : busX = r_r[19];
5'd20 : busX = r_r[20];
5'd21 : busX = r_r[21];
5'd22 : busX = r_r[22];
5'd23 : busX = r_r[23];
5'd24 : busX = r_r[24];
5'd25 : busX = r_r[25];
5'd26 : busX = r_r[26];
5'd27 : busX = r_r[27];
5'd28 : busX = r_r[28];
5'd29 : busX = r_r[29];
5'd30 : busX = r_r[30];
5'd31 : busX = r_r[31];
endcase
case (RY)
5'd0 : busY = 32'b0;
5'd1 : busY = r_r[1];
5'd2 : busY = r_r[2];
5'd3 : busY = r_r[3];
5'd4 : busY = r_r[4];
5'd5 : busY = r_r[5];
5'd6 : busY = r_r[6];
5'd7 : busY = r_r[7];
5'd8 : busY = r_r[8];
5'd9 : busY = r_r[9];
5'd10 : busY = r_r[10];
5'd11 : busY = r_r[11];
5'd12 : busY = r_r[12];
5'd13 : busY = r_r[13];
5'd14 : busY = r_r[14];
5'd15 : busY = r_r[15];
5'd16 : busY = r_r[16];
5'd17 : busY = r_r[17];
5'd18 : busY = r_r[18];
5'd19 : busY = r_r[19];
5'd20 : busY = r_r[20];
5'd21 : busY = r_r[21];
5'd22 : busY = r_r[22];
5'd23 : busY = r_r[23];
5'd24 : busY = r_r[24];
5'd25 : busY = r_r[25];
5'd26 : busY = r_r[26];
5'd27 : busY = r_r[27];
5'd28 : busY = r_r[28];
5'd29 : busY = r_r[29];
5'd30 : busY = r_r[30];
5'd31 : busY = r_r[31];
endcase
end
always@(posedge clk or negedge rst_n) begin
if(!rst_n) begin
for(i=0; i<32; i=i+1) begin
r_r[i] <= 32'b0;
end
end
else begin
r_r [0] <= 32'b0;
for(i=1;i<32;i=i+1) begin
r_r [i] <= r_w[i];
end
end
end
endmodule
//==================================
//= ALU =
//==================================
module ALU (
ctrl,
x,
y,
out
// zero
);
input [3:0] ctrl; // the contral signal which decide the operation of alu
input [31:0] x, y; // 32 bit input data from register file or instruction[15:0]
output [31:0] out; // 32 bit output
// output zero; // input for branch control
reg [31:0] out;
wire [4:0] shamt; // shift amount unsigned 5-bit
assign shamt = y[4:0];
always@(*) begin
case ( ctrl )
4'b0000: begin out = x + y; end //ADD
4'b1000: begin out = {x[31], x} + ~{y[31],y} + 1; end //SUB
4'b0010: begin
out = ({x[31], x} + ~{y[31],y} + 1) >>31; //SLT
end
4'b0100: begin out = x ^ y; end //XOR
4'b0110: begin out = x | y; end //OR
4'b0111: begin out = x & y; end //AND
4'b0001: begin out = x << shamt; end //SLL
4'b0101: begin out = x >> shamt; end //SRL
4'b1101: begin out = $signed(x) >>> shamt; end //SRA
default: begin
out = 32'b0;
end
endcase
end
endmodule
//===============================================
//= Immediate Generator =
//===============================================
module ImmGen(
IR,
Imm
);
input [31:0] IR; // instruction from instruction memory
output [31:0] Imm;
reg [31:0] Imm;
always@(*) begin
case (IR[6:2])
5'b00000: Imm = {{21{IR[31]}},IR[30:25],IR[24:21],IR[20]}; // lw I-type
5'b01000: Imm = {{21{IR[31]}},IR[30:25],IR[11:8],IR[7]}; // sw S-type
5'b11000: Imm = {{20{IR[31]}}, IR[7], IR[30:25], IR[11:8], 1'b0}; // beq B-type
5'b11011: Imm = {{12{IR[31]}}, IR[19:12], IR[20], IR[30:25], IR[24:21], 1'b0}; // jal J-type
5'b11001: Imm = {{21{IR[31]}},IR[30:25],IR[24:21],IR[20]}; // jalr I-type
5'b00100: Imm = { {20{IR[31]}},IR[31:20]}; // I-type
default: Imm = 32'b0;
endcase
end
endmodule
//=======================================
// ALU Control =
//=======================================
module ALU_control(
Func7,
Func3,
OP,
ALUCtrl
);
input Func7;
input [2:0] Func3;
input [1:0] OP;
output [3:0] ALUCtrl;
reg [3:0] ALUCtrl;
wire isSRA;
assign isSRA = ({Func7, Func3[2:0]} == 4'b1101) ? 1'b1 : 1'b0;
always@(*) begin
case(OP)
2'b00: begin
//ALUop = 00, JALR, LW, SW
ALUCtrl = 4'b0000;
end
2'b01: begin
//ALUop = 01, BEQ, BNE
// if(Func3[0]) begin
// //BNE
// ALUCtrl = 4'b0011;
// end
// else begin
// //BEQ
// ALUCtrl = 4'b1011;
// end
ALUCtrl = 4'b0011;
end
2'b10: begin
ALUCtrl = {Func7, Func3[2:0]};
end
2'b11: begin
if(isSRA) begin
ALUCtrl = {Func7, Func3[2:0]};
end
else begin
ALUCtrl = {1'b0, Func3[2:0]};
end
end
endcase
end
endmodule
//========================
//= Control Unit =
//========================
module Control_unit(
Opcode,
Jal,
Jalr,
Branch,
MemRead,
MemToReg,
MemWrite,
ALUSrc,
RegWrite,
ALUop
);
input [4:0] Opcode;
output reg Jal, Jalr, Branch, MemRead, MemToReg, MemWrite, ALUSrc, RegWrite;
output reg [1:0] ALUop;
always@(*) begin
case ( Opcode )
5'b01100: begin
// R-type
Jal = 1'b0;
Jalr = 1'b0;
Branch = 1'b0;
MemRead = 1'b0;
MemToReg = 1'b0;
MemWrite = 1'b0;
ALUSrc = 1'b0;
RegWrite = 1'b1;
ALUop = 2'b10;
end
5'b00000: begin
// lw
Jal = 1'b0;
Jalr = 1'b0;
Branch = 1'b0;
MemRead = 1'b1;
MemToReg = 1'b1;
MemWrite = 1'b0;
ALUSrc = 1'b1;
RegWrite = 1'b1;
ALUop = 2'b00;
end
5'b01000: begin
// sw
Jal = 1'b0;
Jalr = 1'b0;
Branch = 1'b0;
MemRead = 1'b0;
MemToReg = 1'b0;
MemWrite = 1'b1;
ALUSrc = 1'b1;
RegWrite = 1'b0;
ALUop = 2'b00;
end
5'b11000: begin
// beq
Jal = 1'b0;
Jalr = 1'b0;
Branch = 1'b1;
MemRead = 1'b0;
MemToReg = 1'b0;
MemWrite = 1'b0;
ALUSrc = 1'b0;
RegWrite = 1'b0;
ALUop = 2'b01;
end
5'b11011: begin
// jal
Jal = 1'b1;
Jalr = 1'b0;
Branch = 1'b0;
MemRead = 1'b0;
MemToReg = 1'b0;
MemWrite = 1'b0;
ALUSrc = 1'b0;
RegWrite = 1'b1;
ALUop = 2'b00;
end
5'b11001: begin
// jalr
Jal = 1'b0;
Jalr = 1'b1;
Branch = 1'b0;
MemRead = 1'b0;
MemToReg = 1'b0;
MemWrite = 1'b0;
ALUSrc = 1'b0;
RegWrite = 1'b1;
ALUop = 2'b00;
end
5'b00100: begin
// I-type
Jal = 1'b0;
Jalr = 1'b0;
Branch = 1'b0;
MemRead = 1'b0;
MemToReg = 1'b0;
MemWrite = 1'b0;
ALUSrc = 1'b1;
RegWrite = 1'b1;
ALUop = 2'b11;
end
default: begin
Jal = 1'b0;
Jalr = 1'b0;
Branch = 1'b0;
MemRead = 1'b0;
MemToReg = 1'b0;
MemWrite = 1'b0;
ALUSrc = 1'b0;
RegWrite = 1'b0;
ALUop = 2'b00;
end
endcase
end
endmodule
/*
module EX_branch(
branch,
func3_0,
x,
y,
jump
);
input branch;
input func3_0;
input [31:0] x, y;
output jump; //if the condition is satisfy
wire beq, bne;
assign bne = (|(x^y));
assign beq = ~bne;
assign jump = (func3_0)? bne && branch: beq && branch;
endmodule
*/
module ID_jump(
pc,
offset,
rdata1,
forward_data1,
forward_data2,
jal_or_branch_addr,
jalr_addr1,
jalr_addr2,
jalr_addr3
);
input [31:0] pc, offset, rdata1, forward_data1, forward_data2;
output [31:0] jal_or_branch_addr, jalr_addr1, jalr_addr2, jalr_addr3;
assign jal_or_branch_addr = pc + offset;
assign jalr_addr1 = rdata1 + offset;
assign jalr_addr2 = forward_data1 + offset;
assign jalr_addr3 = forward_data2 + offset;
endmodule
module EX_to_ID_bubble(
IDEX_rd_addr,
IFID_rs1,
IFID_rs2,
IDEX_regWrite,
ID_branch_or_jalr,
Bubble
);
input [4:0]IDEX_rd_addr;
input [4:0]IFID_rs1;
input [4:0]IFID_rs2;
input IDEX_regWrite;
input ID_branch_or_jalr;
output Bubble;
wire FLAG1, FLAG2;
assign FLAG1 = (IFID_rs1==IDEX_rd_addr)&&(IFID_rs1!=5'b0);
assign FLAG2 = (IFID_rs2==IDEX_rd_addr)&&(IFID_rs2!=5'b0);
assign Bubble = (IDEX_regWrite && (FLAG1|FLAG2)) && ID_branch_or_jalr;
endmodule