-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcache_dm.v
executable file
·294 lines (278 loc) · 9.64 KB
/
cache_dm.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
module cache(
clk,
proc_reset,
proc_read,
proc_write,
proc_addr,
proc_rdata,
proc_wdata,
proc_stall,
mem_read,
mem_write,
mem_addr,
mem_rdata,
mem_wdata,
mem_ready
);
//==== parameters definition ==============================
// for FSM state...
localparam START = 2'b00;
localparam ALLOCATE = 2'b01;
localparam WRITE_BACK = 2'b10;
localparam BUFFER = 2'b11;
// for loop
integer i;
//==== input/output definition ============================
input clk;
// processor interface
input proc_reset;
input proc_read, proc_write;
input [29:0] proc_addr;
input [31:0] proc_wdata;
output proc_stall;
output [31:0] proc_rdata;
// memory interface
input [127:0] mem_rdata;
input mem_ready;
output reg mem_read, mem_write;
output reg [27:0] mem_addr;
output [127:0] mem_wdata;
//==== wire/reg definition ================================
//for storage
reg valid_w[0:7];
reg valid_r[0:7];
reg dirty_w[0:7];
reg dirty_r[0:7];
reg [24:0] tag_w [0:7];
reg [24:0] tag_r [0:7];
reg [31:0] word_w[0:31];
reg [31:0] word_r[0:31];
// for FSM
reg [1:0] state_nxt;
reg [1:0] state;
// hit or miss
wire hit_or_miss; // 1 for hit, 0 for miss
reg dirty;
// for circuit output
reg [31:0] rdata;
reg stall;
reg [127:0] wdata;
// for buffer state
reg [127:0] wdata_buf_w;
reg [127:0] wdata_buf_r;
//reg [27:0] mem_addr_buf_w, mem_addr_buf_r;
//==== Finite State Machine ===============================
always@( posedge clk) begin
if( proc_reset ) begin
state <= START;
end
else begin
state <= state_nxt;
end
end
//==== next state logic =====================================
always@(*) begin
case ( state )
START:
begin
if( hit_or_miss ) begin
// hit!!
state_nxt = START;
end
else begin
if( dirty ) begin
state_nxt = WRITE_BACK;
end
else begin
state_nxt = ALLOCATE;
end
end
end
ALLOCATE:
begin
if( mem_ready ) begin
state_nxt = BUFFER;
end
else begin
state_nxt = ALLOCATE;
end
end
WRITE_BACK:
begin
if( mem_ready ) begin
state_nxt = ALLOCATE;
end
else begin
state_nxt = WRITE_BACK;
end
end
BUFFER:
begin
state_nxt = START;
end
endcase
end
//==== combinational circuit ==============================
assign proc_rdata = word_r[proc_addr[4:0]];
assign proc_stall = stall;
assign mem_wdata = wdata;
assign hit_or_miss = ({valid_r[proc_addr[4:2]],tag_r[proc_addr[4:2]]} == {1'b1,proc_addr[29:5]});
always@(*) begin
//==== Default value ==================================
dirty = 1'b0;
//rdata = 32'b0;
stall = 1'b0;
wdata = 128'b0;
mem_read = 0;
mem_write = 0;
mem_addr = proc_addr[29:2];
wdata_buf_w = wdata_buf_r;
//mem_addr_buf_w = mem_addr_buf_r;
for (i=0;i<8;i=i+1) begin
valid_w[i] = valid_r[i];
dirty_w[i] = dirty_r[i];
tag_w[i] = tag_r[i];
end
for (i=0;i<32;i=i+1) begin
word_w[i] = word_r[i];
end
//===========================
case ( state )
START:
begin
dirty = dirty_r[proc_addr[4:2]];
if( hit_or_miss) begin
// hit
stall = 1'b0;
//rdata = word_r[proc_addr[4:0]];
if( proc_write ) begin
//word_w[proc_addr[4:0]] = proc_wdata;
case(proc_addr[4:0])
5'd0: word_w[0] = proc_wdata;
5'd1: word_w[1] = proc_wdata;
5'd2: word_w[2] = proc_wdata;
5'd3: word_w[3] = proc_wdata;
5'd4: word_w[4] = proc_wdata;
5'd5: word_w[5] = proc_wdata;
5'd6: word_w[6] = proc_wdata;
5'd7: word_w[7] = proc_wdata;
5'd8: word_w[8] = proc_wdata;
5'd9: word_w[9] = proc_wdata;
5'd10: word_w[10] = proc_wdata;
5'd11: word_w[11] = proc_wdata;
5'd12: word_w[12] = proc_wdata;
5'd13: word_w[13] = proc_wdata;
5'd14: word_w[14] = proc_wdata;
5'd15: word_w[15] = proc_wdata;
5'd16: word_w[16] = proc_wdata;
5'd17: word_w[17] = proc_wdata;
5'd18: word_w[18] = proc_wdata;
5'd19: word_w[19] = proc_wdata;
5'd20: word_w[20] = proc_wdata;
5'd21: word_w[21] = proc_wdata;
5'd22: word_w[22] = proc_wdata;
5'd23: word_w[23] = proc_wdata;
5'd24: word_w[24] = proc_wdata;
5'd25: word_w[25] = proc_wdata;
5'd26: word_w[26] = proc_wdata;
5'd27: word_w[27] = proc_wdata;
5'd28: word_w[28] = proc_wdata;
5'd29: word_w[29] = proc_wdata;
5'd30: word_w[30] = proc_wdata;
5'd31: word_w[31] = proc_wdata;
endcase
//dirty_w[proc_addr[4:2]] = 1'b1;
case(proc_addr[4:2])
3'd0: dirty_w[0] = 1'b1;
3'd1: dirty_w[1] = 1'b1;
3'd2: dirty_w[2] = 1'b1;
3'd3: dirty_w[3] = 1'b1;
3'd4: dirty_w[4] = 1'b1;
3'd5: dirty_w[5] = 1'b1;
3'd6: dirty_w[6] = 1'b1;
3'd7: dirty_w[7] = 1'b1;
endcase
end
end
else begin
// miss
stall = 1'b1;
end
end
ALLOCATE:
begin
stall = 1'b1;
case ( proc_addr[4:2] )
3'd0: tag_w[0] = proc_addr[29:5];
3'd1: tag_w[1] = proc_addr[29:5];
3'd2: tag_w[2] = proc_addr[29:5];
3'd3: tag_w[3] = proc_addr[29:5];
3'd4: tag_w[4] = proc_addr[29:5];
3'd5: tag_w[5] = proc_addr[29:5];
3'd6: tag_w[6] = proc_addr[29:5];
3'd7: tag_w[7] = proc_addr[29:5];
endcase
valid_w[proc_addr[4:2]] = 1'b1;
dirty_w[proc_addr[4:2]] = 1'b0;
if ( mem_ready ) begin
//tag_w[proc_addr[4:2]] = proc_addr[29:5];
wdata_buf_w = mem_rdata;
end
else begin
mem_addr = proc_addr[29:2];
mem_read = 1'b1;
mem_write = 1'b0;
end
end
WRITE_BACK:
begin
stall = 1'b1;
mem_addr = { tag_r[proc_addr[4:2]], proc_addr[4:2] };
wdata = { {word_r[{proc_addr[4:2], 2'b11}]}, {word_r[{proc_addr[4:2], 2'b10}]},
{word_r[{proc_addr[4:2], 2'b01}]}, {word_r[{proc_addr[4:2], 2'b00}]} };
if ( mem_ready ) begin
mem_addr = proc_addr[29:2];
mem_read = 1'b1;
mem_write = 1'b0;
end
else begin
mem_write = 1'b1;
mem_read = 1'b0;
end
end
BUFFER:
begin
stall = 1'b1;
{{word_w[{proc_addr[4:2], 2'b11}]}, {word_w[{proc_addr[4:2], 2'b10}]},
{word_w[{proc_addr[4:2], 2'b01}]}, {word_w[{proc_addr[4:2], 2'b00}]}} = wdata_buf_r;
end
endcase
end
//==== sequential circuit =================================
always@( posedge clk or posedge proc_reset) begin
if( proc_reset ) begin
for (i=0;i<8;i=i+1) begin
valid_r[i] <= 1'b0; // reset valid bit
dirty_r[i] <= 1'b0; // reset dirty bit
tag_r[i] <= 25'b0; // reset tag
end
for (i=0;i<32;i=i+1) begin
word_r[i] <= 32'b0; // reset words
end
wdata_buf_r <= 0;
//mem_addr_buf_r <=0;
end
else begin
for (i=0;i<8;i=i+1) begin
valid_r[i] <= valid_w[i]; // reset valid bit
dirty_r[i] <= dirty_w[i]; // reset dirty bit
tag_r[i] <= tag_w[i]; // reset tag
end
for (i=0;i<32;i=i+1) begin
word_r[i] <= word_w[i]; // reset words
end
wdata_buf_r <= wdata_buf_w;
// mem_addr_buf_r <= mem_addr_buf_w;
end
end
endmodule