Skip to content

BEAM-Labs/DLTutorial

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 

Repository files navigation

DLTutorial

新学生深度学习入门,可以按照顺序和需求自行安排、调节进度。

1. 基础入门功课、tutorial等

1.1. Andrew Ng 的 Deep Learning Specialization及课后作业

视频地址: https://www.bilibili.com/video/BV1pJ41127Q2
HW: https://github.com/ppx-hub/deep-learning-specialization-all-homework/tree/main/Homework-NoAnswer
HW solution: https://github.com/amanchadha/coursera-deep-learning-specialization

  • S1: Neural Networks and Deep Learning

    • video: from P9 - 1: What is a neural network to P50 - 8: What does this have to do with the brain?
    • topics covered: logistic regression, computational graph, activation function, backpropagation and etc
  • S2: Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization

    • video: from P51 - 1: Train / Dev / Test sets to P85 - 11: TensorFlow, 注:现在均使用pytorch
    • topics covered: bias variance tradeoff, regularization, dropout, gradient descent(Momentum, RMSprop, Adam), learning rate decay, batch normalization and etc
  • S3: Structuring Machine Learning Projects

    • video: from P86 -1 : Why ML Strategy to P107 - 10: Whether to use End-to-end Deep Learning
    • topics covered: transfer learning, multi-task learning and etc
    • 这个好像是没有作业的?
  • S4: Convolutional Neural Networks

    • video: from P108 - 1: Computer Vision to P150 - 11: 1D and 3D Generalizations
    • topics covered: CNN basics (padding, pooling and etc), ResNet, Data augmentation, YOLO, U-Net, Siamese Network and etc
  • S5: Sequence Models

    • video: from P151 - 1: Why Sequence Models? to P180 - 8: Attention Model
    • video: transformer network部分我在b站没有找到视频,有找到的同学可以补充,youtube视频可以参考这里:https://www.youtube.com/watch?v=S7oA5C43Rbc&t=18037s, 时间大概从5小时左右开始
    • topics covered: GRU, LSTM, word2vec, glove, beam search, attention model, transformer and etc

1.2. 李宏毅机器学习

1.3. 动手学强化学习

2. 经典入门文章,所有研究方向必读

2.1. transformer 架构细节学习

2.2. Pre-trained Language Models (PLM)

limu paper reading repo: https://github.com/mli/paper-reading

  • 2.2.1. 阅读下列预训练语言模型文章: GPT, BERT, GPT2, 请先自己阅读,之后和这里进行对比,比较下自己是否漏读了重要内容

    • Improving Language Understanding by Generative Pre-Training. Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. Preprint. [pdf] [project] (GPT)
    • BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. NAACL 2019. [pdf] [code & model]
    • Language Models are Unsupervised Multitask Learners. Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever. Preprint. [pdf] [code] (GPT-2)
    • RoBERTa: A Robustly Optimized BERT Pretraining Approach. Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. Preprint. [pdf] [code & model] (optional)
  • 2.2.2. 阅读seq2seq语言模型相关文章

    • Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. Preprint. [pdf] [code & model] (T5)
    • mT5: A massively multilingual pre-trained text-to-text transformer. Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel Preprint. [pdf](mT5)
  • 2.2.3. 建议完成语言模型的pre-train (demo)和fine-tuning

    • 不要直接调用huggingface中run_glue.py里的trainer进行fine-tune, 但可以使用其下载和load data
    • 也可以利用script自行下载数据
    • fine-tune language models (BERT, GPT, RoBERTA, T5 and etc) on GLUE benchmark (MRPC和RTE数据集较小,可以优先只考虑这两个数据集),注意调整超参数用来获得更好的结果
    • wikitext上pre-train 自己的语言模型,在MRPC和RTE数据集上fine-tune, 并和BERT的结果进行比较

2.3. Multi-modal, diffusion, LLM and etc (TODO)

3. 根据研究方向的细分文章 (TODO)

3.1. Bio Language Models

3.2. Structure Prediction

3.3. Proteomics

3.4. Design and et al.

4. Miscellaneous

4.1. Good informative talks

About

新学生深度学习入门

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published