This is a step by step guide to install the tiscamera software on a Raspberry Pi 3B+ and use it with opencv.
This guide is not complete yet.
sudo apt install autoconf aravis-tools glade cmake g++ git gstreamer1.0-plugins-bad gstreamer1.0-plugins-base gstreamer1.0-plugins-good gstreamer1.0-plugins-ugly gstreamer1.0-tools gstreamer1.0-x gtk-doc-tools intltool libqt5gstreamer-dev libaudit-dev libaudit1 libgirepository1.0-dev libglib2.0-dev libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev libnotify-dev libnotify4 libpcap-dev libpcap0.8 libtinyxml-dev libudev-dev libudev1 libusb-1.0-0-dev libxml2 libxml2-dev libzip-dev pkg-config python-setuptools python3-sphinx qtbase5-dev qtdeclarative5-dev uvcdynctrl -y
pip3 install ninja
sudo apt install gstreamer1.0-tools -y
export PATH="$HOME/.local/bin:$PATH"
git clone --recursive https://github.com/TheImagingSource/tiscamera.git
cd tiscamera
mkdir build
cd build
cmake -DBUILD_ARAVIS=ON -DBUILD_GST_1_0=ON -DBUILD_TOOLS=ON -DBUILD_V4L2=ON -DCMAKE_INSTALL_PREFIX=/usr ..
make
sudo make install
sudo systemctl daemon-reload
sudo systemctl enable tcam-gige-daemon.service
sudo systemctl start tcam-gige-daemon.service
tcam-capture
cd ~
git clone https://github.com/opencv/opencv
cd opencv
mkdir build && cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE -D INSTALL_C_EXAMPLES=OFF -D PYTHON_EXECUTABLE=/usr/bin/python/aravis_opencv/gige_py/bin/python -D WITH_GSTREAMER=ON -D WITH_ARAVIS=ON ..
make -j4
last 2 percent need lots of memory, you may need to increase swap temporarily, use make -j1 to save some memory for the last bit.
sudo dphys-swapfile swapoff
sudo nano /etc/dphys-swapfile
CONF_SWAPSIZE=1024
sudo dphys-swapfile setup
sudo dphys-swapfile swapon
sudo make install
export GI_TYPELIB_PATH="/usr/lib/x86_64-linux-gnu/girepository-1.0"
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
sudo apt install meson ninja-build
sudo pip3 install meson
sudo ln -s /usr/local/bin/meson /usr/bin/meson
cd ~
wget https://github.com/AravisProject/aravis/releases/download/0.8.26/aravis-0.8.26.tar.xz
tar -xf aravis-0.8.26.tar.xz
cd aravis-0.8.26
meson --prefix /usr --buildtype=plain build
cd build
ninja
sudo ninja install
sudo ldconfig
pip install opencv-python==4.5.3.56
pip install --upgrade numpy
sudo apt install libatlas-base-dev
python main.py
python
import single_frame
width = 1920
height = 1080
exposure_us = 100000
# optional parameters
image = single_frame.get(width, height, exposure_us)