Skip to content

Python module providing tools for cubing algorithm manipulations.

License

Notifications You must be signed in to change notification settings

Fantomas42/cubing-algs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

85 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cubing Algs

Python module providing tools for cubing algorithm manipulations.

Installation

pip install cubing-algs

Features

  • Parse and validate Rubik's cube algorithm notation
  • Transform algorithms (mirror, compress, rotate, etc.)
  • Calculate metrics (HTM, QTM, STM, ETM, QSTM)
  • Support for wide moves, slice moves, and rotations
  • Japanese notation support

Basic Usage

from cubing_algs.parsing import parse_moves
from cubing_algs.transform.mirror import mirror_moves
from cubing_algs.transform.size import expand_moves

algo = parse_moves("F R U2 F'")
print(algo.transform(mirror_moves, expand_moves))
# F U U R' F'

Parsing

Parse a string of moves into an Algorithm object:

from cubing_algs.parsing import parse_moves

# Basic parsing
algo = parse_moves("R U R' U'")

# Parsing multiple formats
algo = parse_moves("R U R` U`")  # Backtick notation
algo = parse_moves("R U R3 U3")  # 3 for inverse
algo = parse_moves("R1 U1 R3 U3")  # 1 for single moves
algo = parse_moves("R:U:R':U'")  # With colons
algo = parse_moves("R(U)R'[U']")  # With brackets/parentheses

# Parse CFOP style (removes starting/ending U/y rotations)
from cubing_algs.parsing import parse_moves_cfop
algo = parse_moves_cfop("y U R U R' U'")  # Will remove the initial y

Transformations

Apply various transformations to algorithms:

from cubing_algs.parsing import parse_moves
from cubing_algs.transform.mirror import mirror_moves
from cubing_algs.transform.size import compress_moves
from cubing_algs.transform.size import expand_moves
from cubing_algs.transform.japanese import japanese_moves
from cubing_algs.transform.japanese import unjapanese_moves
from cubing_algs.transform.rotation import remove_final_rotations
from cubing_algs.transform.slice import reslice_moves
from cubing_algs.transform.slice import unslice_wide_moves
from cubing_algs.transform.symmetry import (
    symmetry_m_moves,
    symmetry_s_moves,
    symmetry_e_moves,
    symmetry_c_moves
)
from cubing_algs.transform.offset import (
    offset_x_moves,
    offset_y_moves,
    offset_z_moves
)
from cubing_algs.transform.degrip import (
    degrip_x_moves,
    degrip_y_moves,
    degrip_z_moves,
    degrip_full_moves
)

algo = parse_moves("R U R' U'")

# Mirror an algorithm
mirrored = algo.transform(mirror_moves)  # U' R U' R'

# Compression/Expansion
compressed = algo.transform(compress_moves)  # Optimize with cancellations
expanded = algo.transform(expand_moves)  # Convert double moves to single pairs

# Japanese notation
japanese = algo.transform(japanese_moves)  # Convert to Rw notation
unjapanese = algo.transform(unjapanese_moves)  # Convert to r notation

# Remove final rotations
clean = algo.transform(remove_final_rotations)  # Remove trailing x, y, z moves

# Slice moves
wide = algo.transform(unslice_wide_moves)  # M -> r' R, S -> f F', E -> u' U
resliced = algo.transform(reslice_moves)  # L' R -> M x, etc.

# Symmetry
m_sym = algo.transform(symmetry_m_moves)  # M-slice symmetry (L<->R)
s_sym = algo.transform(symmetry_s_moves)  # S-slice symmetry (F<->B)
e_sym = algo.transform(symmetry_e_moves)  # E-slice symmetry (U<->D)
c_sym = algo.transform(symmetry_c_moves)  # Combined M and S symmetry

# Offset (change viewpoint)
x_offset = algo.transform(offset_x_moves)  # As if rotated with x
y_offset = algo.transform(offset_y_moves)  # As if rotated with y
z_offset = algo.transform(offset_z_moves)  # As if rotated with z

# Degrip (move rotations to the end)
x_degrip = algo.transform(degrip_x_moves)  # Move x rotations to the end
y_degrip = algo.transform(degrip_y_moves)  # Move y rotations to the end
z_degrip = algo.transform(degrip_z_moves)  # Move z rotations to the end
full_degrip = algo.transform(degrip_full_moves)  # Move all rotations to the end

Metrics

Compute algorithm metrics:

from cubing_algs.parsing import parse_moves

algo = parse_moves("R U R' U' R' F R2 U' R' U' R U R' F'")

# Access metrics
print(algo.metrics)
# {
#   'rotations': 0,
#   'outer_moves': 14,
#   'inner_moves': 0,
#   'htm': 14,
#   'qtm': 16,
#   'stm': 14,
#   'etm': 14,
#   'qstm': 16,
#   'generators': ['R', 'U', 'F']
# }

# Individual metrics
print(f"HTM: {algo.metrics['htm']}")
print(f"QTM: {algo.metrics['qtm']}")
print(f"STM: {algo.metrics['stm']}")
print(f"ETM: {algo.metrics['etm']}")
print(f"QSTM: {algo.metrics['qstm']}")
print(f"Generators: {', '.join(algo.metrics['generators'])}")

Move Object

The Move class represents a single move:

from cubing_algs.move import Move

move = Move("R")
move2 = Move("R2")
move3 = Move("R'")
wide = Move("r")
japanese = Move("Rw")
rotation = Move("x")

# Properties
print(move.base_move)  # R
print(move.modifier)   # ''

# Checking move type
print(move.is_rotation_move)   # False
print(move.is_outer_move)      # True
print(move.is_inner_move)      # False
print(move.is_wide_move)       # False

# Checking modifiers
print(move.is_clockwise)         # True
print(move.is_counter_clockwise) # False
print(move.is_double)            # False

# Transformations
print(move.inverted)   # R'
print(move.doubled)    # R2
print(wide.japanesed)  # Rw
print(japanese.unjapanesed)  # r

Optimization Functions

The module provides several optimization functions to simplify algorithms:

from cubing_algs.parsing import parse_moves
from cubing_algs.transform.optimize import (
    optimize_repeat_three_moves,
    optimize_do_undo_moves,
    optimize_double_moves,
    optimize_triple_moves
)

algo = parse_moves("R R R")
optimized1 = algo.transform(optimize_repeat_three_moves)  # R'

algo = parse_moves("R R'")
optimized2 = algo.transform(optimize_do_undo_moves)  # (empty)

algo = parse_moves("R R")
optimized3 = algo.transform(optimize_double_moves)  # R2

algo = parse_moves("R R2")
optimized4 = algo.transform(optimize_triple_moves)  # R'

Chaining Transformations

Multiple transformations can be chained together:

from cubing_algs.parsing import parse_moves
from cubing_algs.transform.mirror import mirror_moves
from cubing_algs.transform.size import compress_moves
from cubing_algs.transform.symmetry import symmetry_m_moves

algo = parse_moves("R U R' U' R' F R F'")
result = algo.transform(mirror_moves, compress_moves, symmetry_m_moves)

# Same as:
# result = algo.transform(mirror_moves)
# result = result.transform(compress_moves)
# result = result.transform(symmetry_m_moves)

Transform until fixed point

Chained transformations can be run until a fixed point:

from cubing_algs.transform.optimize import optimize_do_undo_moves
from cubing_algs.transform.optimize import optimize_double_moves

algo = parse_moves("R R F F' R2 U F2")
result = algo.transform(optimize_do_undo_moves, optimize_double_moves)
# R2 R2 U F2

algo = parse_moves("R R F F' R2 U F2")
result = algo.transform(optimize_do_undo_moves, optimize_double_moves, to_fixpoint=True)
# U F2

Understanding Metrics

The module calculates the following metrics:

  • HTM (Half Turn Metric): Counts quarter turns as 1, half turns as 1
  • QTM (Quarter Turn Metric): Counts quarter turns as 1, half turns as 2
  • STM (Slice Turn Metric): Counts both face turns and slice moves as 1
  • ETM (Execution Turn Metric): Counts all moves including rotations
  • QSTM (Quarter Slice Turn Metric): Counts quarter turns as 1, slice quarter turns as 1, half turns as 2

Examples

Generating a mirror of an OLL algorithm

from cubing_algs.parsing import parse_moves
from cubing_algs.transform.mirror import mirror_moves

oll = parse_moves("r U R' U' r' F R F'")
oll_mirror = oll.transform(mirror_moves)
print(oll_mirror)  # F' R' F r U R U' r'

Converting a wide move algorithm to Japanese notation

from cubing_algs.parsing import parse_moves
from cubing_algs.transform.japanese import japanese_moves

algo = parse_moves("r U R' U' r' F R F'")
japanese = algo.transform(japanese_moves)
print(japanese)  # Rw U R' U' Rw' F R F'

Finding the shortest form of an algorithm

from cubing_algs.parsing import parse_moves
from cubing_algs.transform.size import compress_moves

algo = parse_moves("R U U U R' R R F F' F F")
compressed = algo.transform(compress_moves)
print(compressed)  # R U' R2 F2

Changing the viewpoint of an algorithm

from cubing_algs.parsing import parse_moves
from cubing_algs.transform.offset import offset_y_moves

algo = parse_moves("R U R' U'")
y_rotated = algo.transform(offset_y_moves)
print(y_rotated)  # F R F' R'

De-gripping a fingertrick sequence

from cubing_algs.parsing import parse_moves
from cubing_algs.transform.degrip import degrip_y_moves

algo = parse_moves("y F R U R' U' F'")
degripped = algo.transform(degrip_y_moves)
print(degripped)  # R F R F' R' y

About

Python module providing tools for cubing algorithm manipulations.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages