Skip to content

Commit

Permalink
Allow BatchNorm on CUDA with track_stats=False
Browse files Browse the repository at this point in the history
Enables BatchNorm without track_stats in training and test modes. Also,
unit tests are added to ensure the CUDA implementation matches the CPU
implementation.

Also, update required NNlib to 0.9.14 which includes fixes to batcnorm
when track_stats=False.
  • Loading branch information
paulnovo committed Apr 28, 2024
1 parent 8654721 commit 7284b07
Show file tree
Hide file tree
Showing 3 changed files with 15 additions and 6 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ Functors = "0.4"
MLUtils = "0.4"
MacroTools = "0.5"
Metal = "0.5, 1"
NNlib = "0.9.1"
NNlib = "0.9.14"
OneHotArrays = "0.2.4"
Optimisers = "0.3.2"
Preferences = "1"
Expand Down
2 changes: 1 addition & 1 deletion ext/FluxCUDAcuDNNExt/FluxCUDAcuDNNExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -24,11 +24,11 @@ function (BN::Flux.BatchNorm)(x::Union{CuArray{T,2},CuArray{T,4},CuArray{T,5}},
cache=nothing) where T<:Union{Float32, Float64}

@assert BN.affine "BatchNorm: only affine=true supported on gpu"
@assert BN.track_stats "BatchNorm: only track_stats=true supported on gpu"
@assert length(BN.β) == size(x, ndims(x)-1) "BatchNorm: input has wrong number of channels"

return BN.λ.(NNlib.batchnorm(BN.γ, BN.β, x, BN.μ, BN.σ², BN.momentum;
cache=cache, alpha=1, beta=0, eps=BN.ϵ,
track_stats=BN.track_stats,
training=Flux._isactive(BN, x)))
end

Expand Down
17 changes: 13 additions & 4 deletions test/ext_cuda/layers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,20 +17,25 @@ const ACTIVATIONS = [identity, relu, tanh,
sigmoid, exp, softplus,
elu, selu]

function gpu_gradtest(name::String, layers::Vector, x_cpu = nothing, args...; test_cpu = true)
function gpu_gradtest(name::String, layers::Vector, x_cpu = nothing, args...; test_cpu = true, test_mode = false)
isnothing(x_cpu) && error("Missing input to test the layers against.")
@testset "$name GPU grad tests" begin
for layer in layers
@testset "$layer Layer GPU grad test" begin

# compute output and grad of parameters
l_cpu = layer(args...)
l_gpu = l_cpu |> gpu
if test_mode
testmode!(l_cpu)
testmode!(l_gpu)
end

ps_cpu = Flux.params(l_cpu)
y_cpu, back_cpu = pullback(() -> sum(l_cpu(x_cpu)), ps_cpu)
gs_cpu = back_cpu(1f0)

x_gpu = gpu(x_cpu)
l_gpu = l_cpu |> gpu
ps_gpu = Flux.params(l_gpu)

if typeof(l_gpu) <: BROKEN_LAYERS
Expand Down Expand Up @@ -78,6 +83,7 @@ function gpu_gradtest(name::String, layers::Vector, x_cpu = nothing, args...; te
end

# Just to give testset in gpu_gradtest meaningful labels
BatchNormNoTrackStats(args...) = BatchNorm(args...; track_stats = false)
ConvNoBias(args...) = Conv(args...; bias = false)
ConvTransposeNoBias(args...) = ConvTranspose(args...; bias = false)
CrossCorNoBias(args...) = CrossCor(args...; bias = false)
Expand All @@ -96,9 +102,12 @@ for act in ACTIVATIONS
groupedconv = [GroupedConv, GroupedConvTranspose]
gpu_gradtest("GroupedConvolution with $act", groupedconv, rand(Float32, 28, 28, 100, 2), (3,3), 100 => 25, act, test_cpu = true)

batch_norm = [BatchNorm]
batch_norm = [BatchNorm, BatchNormNoTrackStats]
gpu_gradtest("BatchNorm 1 with $act", batch_norm, rand(Float32, 28,28,3,4), 3, act, test_cpu = false) #TODO fix errors
gpu_gradtest("BatchNorm 2 with $act", batch_norm, rand(Float32, 5,4), 5, act, test_cpu = false)
gpu_gradtest("BatchNorm 2 with $act", batch_norm, rand(Float32, 5,4), 5, act, test_cpu = true)

batch_norm = [BatchNormNoTrackStats]
gpu_gradtest("BatchNorm 3 with $act (test mode)", batch_norm, rand(Float32, 5,4), 5, act, test_cpu = true, test_mode = true)

instancenorm = [InstanceNorm]
gpu_gradtest("InstanceNorm with $act", instancenorm, r, 1, act, test_cpu = false)
Expand Down

0 comments on commit 7284b07

Please sign in to comment.