Skip to content

Commit

Permalink
Add fold and unfold (#444)
Browse files Browse the repository at this point in the history
* fold/unfold added

* fold kernel flipping

* docs, fix semicolon error

* unfold flipped=true default, added to docs, rrule test

* doc example fix for julia 1.6 compat.

* removed fold/unfold from export
  • Loading branch information
nikopj authored Nov 28, 2022
1 parent f7597d9 commit a36f15b
Show file tree
Hide file tree
Showing 5 changed files with 247 additions and 0 deletions.
2 changes: 2 additions & 0 deletions docs/src/reference.md
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,8 @@ ConvDims
depthwiseconv
DepthwiseConvDims
DenseConvDims
unfold
fold
```

## Upsampling
Expand Down
2 changes: 2 additions & 0 deletions src/NNlib.jl
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,8 @@ export conv, conv!, ∇conv_data, ∇conv_data!, ∇conv_filter,
include("conv_bias_act.jl")
export conv_bias_act, conv_bias_act!

include("fold.jl")

include("ctc.jl")
export ctc_loss

Expand Down
199 changes: 199 additions & 0 deletions src/fold.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,199 @@

"""
unfold(x, kernel_size; stride = 1, pad = 0, dilation = 0, flipped = true)
Places sliding windows of x into a container tensor of size `(num_windows,
window_size, batchsize)`. The window size is determined by the `prod(spatial dims
of kernel)*input_channels`. The number of sliding windows will match those of
convolution (`conv`) with the same kernel_size and arguments. Note that
by default `conv` flips the spatial dimensions of its kernel (default
`flipped=false`), whereas `unfold` does not (default `flipped=true`).
Uses `NNlib.im2col!` as backend.
See also [`fold`](@ref), the adjoint/transpose operator
and a potential inverse of `unfold`.
# Example
The below example demonstrates that `unfold` uses the same sliding windows as `conv`.
In general [`batched_mul`](@ref) + `unfold` should not be used to achieve convolution.
```jldoctest
julia> x = reshape([100 2 3 40 5 6 700], 7, 1, 1); # 1D data, 1 channel, batch of 1
julia> w = reshape([1 0 -1], 3, 1, 1); # 1D conv kernel of length 3
julia> kws = (pad=1, stride=2, flipped=true); # use same args for conv and unfold
julia> z = NNlib.unfold(x, size(w); kws...)
4×3×1 Array{Int64, 3}:
[:, :, 1] =
0 100 2
2 3 40
40 5 6
6 700 0
julia> y1 = conv(x, w; kws...)
4×1×1 Array{Int64, 3}:
[:, :, 1] =
-2
-38
34
6
julia> y2 = z ⊠ w # ⊠ (\\boxtimes) is NNlib.batched_mul
4×1×1 Array{Int64, 3}:
[:, :, 1] =
-2
-38
34
6
```
"""
function unfold(x::AbstractArray{T, N}, kernel_size::NTuple{K}; stride = 1, pad = 0, dilation = 1, flipped = true) where {T, K, N}
stride = expand(Val(N - 2), stride)
padding = expand(Val(N - 2), pad)
dilation = expand(Val(N - 2), dilation)
cdims = DenseConvDims(size(x), kernel_size; stride, padding, dilation, flipkernel=flipped)
return unfold(x, cdims)
end

"""
fold(y, output_size, kernel_size; stride = 1, pad = 0, dilation = 0, flipped = true)
The adjoint/transpose operator of `unfold`. It accumulates sliding windows from
the output of `unfold` into a container tensor of size `output_size`. An inverse
to `unfold` may be obtained (in some cases) by using `fold` and accounting for scaling issues
with a divisor (see example). Uses `NNlib.col2im!` as backend.
See also [`unfold`](@ref).
# Example
```jldoctest
julia> x = reshape([100 2 3 40 5 6 700], 7, 1, 1); # 1D data, 1 channel, batch of 1
julia> y = NNlib.unfold(x, (3,1,1)) # sliding window of size 3
5×3×1 Array{Int64, 3}:
[:, :, 1] =
100 2 3
2 3 40
3 40 5
40 5 6
5 6 700
julia> z = NNlib.fold(y, size(x), (3,1,1)) # sum of contributions in y. 100 appears once, 40 three times
7×1×1 Array{Int64, 3}:
[:, :, 1] =
100
4
9
120
15
12
700
julia> divisor = NNlib.fold(NNlib.unfold(ones(size(x)...), (3,1,1)), size(x), (3,1,1))
7×1×1 Array{Float64, 3}:
[:, :, 1] =
1.0
2.0
3.0
3.0
3.0
2.0
1.0
julia> z ./ divisor
7×1×1 Array{Float64, 3}:
[:, :, 1] =
100.0
2.0
3.0
40.0
5.0
6.0
700.0
```
In general, an inverse to `unfold` does not exist if `divisor` contains zeros.
"""
function fold(x::AbstractArray{T, 3}, output_size::NTuple{N}, kernel_size::NTuple{K}; stride = 1, pad = 0, dilation = 1, flipped = true) where {T, K, N}
stride = expand(Val(N - 2), stride)
padding = expand(Val(N - 2), pad)
dilation = expand(Val(N - 2), dilation)
cdims = DenseConvDims(output_size, kernel_size; stride, padding, dilation, flipkernel=flipped)
return fold(x, output_size, cdims)
end

# im2col_dims returns (numblocks, blocksize, threadnum) where thread dim is used as thread-local
# workspace for multithreaded conv. Ultimately, we want to threadnum with batchsize.
unfold_dims(cdims::DenseConvDims) = im2col_dims(cdims)[1:2]

# auto-allocating versions
function unfold(x::AbstractArray{T, N}, cdims::DenseConvDims) where {T, N}
y = similar(x, unfold_dims(cdims)..., size(x, N)) # (numblocks, blocksize, batchsize)
return unfold!(y, x, cdims)
end

function fold(y::AbstractArray{T, 3}, output_size::NTuple, cdims::DenseConvDims) where {T}
x = similar(y, output_size)
return fold!(x, y, cdims)
end

# N < 5 -dimension in-place versions
function unfold!(y::AbstractArray{yT, 3}, x::AbstractArray{xT, N}, cdims::DenseConvDims) where {yT, xT, N}
unfold!(
y,
insert_singleton_spatial_dimension(x, 5-N),
insert_singleton_spatial_dimension(cdims, 5-N),
)
return y
end

function fold!(x::AbstractArray{xT, N}, y::AbstractArray{yT, 3}, cdims::DenseConvDims) where {yT, xT, N}
fold!(
insert_singleton_spatial_dimension(x, 5-N),
y,
insert_singleton_spatial_dimension(cdims, 5-N),
)
return x
end

# 5-dimension in-place versions
function unfold!(y::AbstractArray{yT, 3}, x::AbstractArray{xT, 5}, cdims::DenseConvDims) where {yT, xT}
@threads for batch_idx in 1:size(x, 5)
y_slice = view(y, :, :, batch_idx)
im2col!(y_slice, view(x, :, :, :, :, batch_idx), cdims)
end
return y
end

function fold!(x::AbstractArray{xT, 5}, y::AbstractArray{yT, 3}, cdims::DenseConvDims) where {xT, yT}
@threads for batch_idx in 1:size(x, 5)
y_slice = view(y, :, :, batch_idx)
col2im!(view(x, :, :, :, :, batch_idx), y_slice, cdims)
end
return x
end

# reverse diff rules
function rrule(::typeof(unfold), x, cdims::DenseConvDims; kw...)
function unfold_pullback(Δ)
return (
NoTangent(),
fold(unthunk(Δ), size(x), cdims; kw...),
NoTangent(),
)
end
return unfold(x, cdims; kw...), unfold_pullback
end

function rrule(::typeof(fold), x, output_size, cdims::DenseConvDims; kw...)
function fold_pullback(Δ)
return (
NoTangent(),
unfold(unthunk(Δ), cdims; kw...),
NoTangent(),
NoTangent(),
)
end
return fold(x, output_size, cdims; kw...), fold_pullback
end

40 changes: 40 additions & 0 deletions test/fold.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
using NNlib, Test

@testset "unfold wrapper" begin
x = rand(rng, 16, 16, 3, 10)
w = rand(rng, 5, 5, 3, 2)
@test size(NNlib.unfold(x, size(w))) == (144, 75, 10)
@test size(NNlib.unfold(x, size(w); pad=2)) == (256, 75, 10)
@test size(NNlib.unfold(x, size(w); stride=2)) == (36, 75, 10)
@test size(NNlib.unfold(x, size(w); dilation=2)) == (64, 75, 10)
end

@testset "Inverses: spatial_rank=$spatial_rank" for spatial_rank in (1, 2, 3)
x = rand(rng, repeat([8], spatial_rank)..., 3, 2)
w = rand(rng, repeat([3], spatial_rank)..., 3, 3)
cdims = DenseConvDims(x, w; padding=1)
y = NNlib.unfold(x, cdims)
z = NNlib.fold(y, size(x), cdims)
divisor = NNlib.fold(NNlib.unfold(ones(eltype(x), size(x)...), cdims), size(x), cdims)
@test isapprox(z ./ divisor, x, rtol=1.0e-7)

# introduce stride
cdims = DenseConvDims(x, w; padding=1, stride=2)
y = NNlib.unfold(x, cdims)
z = NNlib.fold(y, size(x), cdims)
divisor = NNlib.fold(NNlib.unfold(ones(eltype(x), size(x)...), cdims), size(x), cdims)
@test isapprox(z ./ divisor, x, rtol=1.0e-7)
end

@testset "AutoDiff: spatial_rank=$spatial_rank" for spatial_rank in (1, 2, 3)
x = rand(rng, repeat([5], spatial_rank)..., 3, 2)
w = rand(rng, repeat([3], spatial_rank)..., 3, 3)
cdims = DenseConvDims(x, w)
gradtest(x -> NNlib.unfold(x, cdims), x)
test_rrule(NNlib.unfold, x, cdims)

y = NNlib.unfold(x, cdims)
gradtest(y -> NNlib.fold(y, size(x), cdims), y)
test_rrule(NNlib.fold, y, size(x), cdims)
end

4 changes: 4 additions & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,10 @@ include("test_utils.jl")
include("ctc.jl")
end

@testset "Fold/Unfold" begin
include("fold.jl")
end

@testset "Inference" begin
include("inference.jl")
end
Expand Down

0 comments on commit a36f15b

Please sign in to comment.