-
-
Notifications
You must be signed in to change notification settings - Fork 122
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* fold/unfold added * fold kernel flipping * docs, fix semicolon error * unfold flipped=true default, added to docs, rrule test * doc example fix for julia 1.6 compat. * removed fold/unfold from export
- Loading branch information
Showing
5 changed files
with
247 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -71,6 +71,8 @@ ConvDims | |
depthwiseconv | ||
DepthwiseConvDims | ||
DenseConvDims | ||
unfold | ||
fold | ||
``` | ||
|
||
## Upsampling | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
|
||
""" | ||
unfold(x, kernel_size; stride = 1, pad = 0, dilation = 0, flipped = true) | ||
Places sliding windows of x into a container tensor of size `(num_windows, | ||
window_size, batchsize)`. The window size is determined by the `prod(spatial dims | ||
of kernel)*input_channels`. The number of sliding windows will match those of | ||
convolution (`conv`) with the same kernel_size and arguments. Note that | ||
by default `conv` flips the spatial dimensions of its kernel (default | ||
`flipped=false`), whereas `unfold` does not (default `flipped=true`). | ||
Uses `NNlib.im2col!` as backend. | ||
See also [`fold`](@ref), the adjoint/transpose operator | ||
and a potential inverse of `unfold`. | ||
# Example | ||
The below example demonstrates that `unfold` uses the same sliding windows as `conv`. | ||
In general [`batched_mul`](@ref) + `unfold` should not be used to achieve convolution. | ||
```jldoctest | ||
julia> x = reshape([100 2 3 40 5 6 700], 7, 1, 1); # 1D data, 1 channel, batch of 1 | ||
julia> w = reshape([1 0 -1], 3, 1, 1); # 1D conv kernel of length 3 | ||
julia> kws = (pad=1, stride=2, flipped=true); # use same args for conv and unfold | ||
julia> z = NNlib.unfold(x, size(w); kws...) | ||
4×3×1 Array{Int64, 3}: | ||
[:, :, 1] = | ||
0 100 2 | ||
2 3 40 | ||
40 5 6 | ||
6 700 0 | ||
julia> y1 = conv(x, w; kws...) | ||
4×1×1 Array{Int64, 3}: | ||
[:, :, 1] = | ||
-2 | ||
-38 | ||
34 | ||
6 | ||
julia> y2 = z ⊠ w # ⊠ (\\boxtimes) is NNlib.batched_mul | ||
4×1×1 Array{Int64, 3}: | ||
[:, :, 1] = | ||
-2 | ||
-38 | ||
34 | ||
6 | ||
``` | ||
""" | ||
function unfold(x::AbstractArray{T, N}, kernel_size::NTuple{K}; stride = 1, pad = 0, dilation = 1, flipped = true) where {T, K, N} | ||
stride = expand(Val(N - 2), stride) | ||
padding = expand(Val(N - 2), pad) | ||
dilation = expand(Val(N - 2), dilation) | ||
cdims = DenseConvDims(size(x), kernel_size; stride, padding, dilation, flipkernel=flipped) | ||
return unfold(x, cdims) | ||
end | ||
|
||
""" | ||
fold(y, output_size, kernel_size; stride = 1, pad = 0, dilation = 0, flipped = true) | ||
The adjoint/transpose operator of `unfold`. It accumulates sliding windows from | ||
the output of `unfold` into a container tensor of size `output_size`. An inverse | ||
to `unfold` may be obtained (in some cases) by using `fold` and accounting for scaling issues | ||
with a divisor (see example). Uses `NNlib.col2im!` as backend. | ||
See also [`unfold`](@ref). | ||
# Example | ||
```jldoctest | ||
julia> x = reshape([100 2 3 40 5 6 700], 7, 1, 1); # 1D data, 1 channel, batch of 1 | ||
julia> y = NNlib.unfold(x, (3,1,1)) # sliding window of size 3 | ||
5×3×1 Array{Int64, 3}: | ||
[:, :, 1] = | ||
100 2 3 | ||
2 3 40 | ||
3 40 5 | ||
40 5 6 | ||
5 6 700 | ||
julia> z = NNlib.fold(y, size(x), (3,1,1)) # sum of contributions in y. 100 appears once, 40 three times | ||
7×1×1 Array{Int64, 3}: | ||
[:, :, 1] = | ||
100 | ||
4 | ||
9 | ||
120 | ||
15 | ||
12 | ||
700 | ||
julia> divisor = NNlib.fold(NNlib.unfold(ones(size(x)...), (3,1,1)), size(x), (3,1,1)) | ||
7×1×1 Array{Float64, 3}: | ||
[:, :, 1] = | ||
1.0 | ||
2.0 | ||
3.0 | ||
3.0 | ||
3.0 | ||
2.0 | ||
1.0 | ||
julia> z ./ divisor | ||
7×1×1 Array{Float64, 3}: | ||
[:, :, 1] = | ||
100.0 | ||
2.0 | ||
3.0 | ||
40.0 | ||
5.0 | ||
6.0 | ||
700.0 | ||
``` | ||
In general, an inverse to `unfold` does not exist if `divisor` contains zeros. | ||
""" | ||
function fold(x::AbstractArray{T, 3}, output_size::NTuple{N}, kernel_size::NTuple{K}; stride = 1, pad = 0, dilation = 1, flipped = true) where {T, K, N} | ||
stride = expand(Val(N - 2), stride) | ||
padding = expand(Val(N - 2), pad) | ||
dilation = expand(Val(N - 2), dilation) | ||
cdims = DenseConvDims(output_size, kernel_size; stride, padding, dilation, flipkernel=flipped) | ||
return fold(x, output_size, cdims) | ||
end | ||
|
||
# im2col_dims returns (numblocks, blocksize, threadnum) where thread dim is used as thread-local | ||
# workspace for multithreaded conv. Ultimately, we want to threadnum with batchsize. | ||
unfold_dims(cdims::DenseConvDims) = im2col_dims(cdims)[1:2] | ||
|
||
# auto-allocating versions | ||
function unfold(x::AbstractArray{T, N}, cdims::DenseConvDims) where {T, N} | ||
y = similar(x, unfold_dims(cdims)..., size(x, N)) # (numblocks, blocksize, batchsize) | ||
return unfold!(y, x, cdims) | ||
end | ||
|
||
function fold(y::AbstractArray{T, 3}, output_size::NTuple, cdims::DenseConvDims) where {T} | ||
x = similar(y, output_size) | ||
return fold!(x, y, cdims) | ||
end | ||
|
||
# N < 5 -dimension in-place versions | ||
function unfold!(y::AbstractArray{yT, 3}, x::AbstractArray{xT, N}, cdims::DenseConvDims) where {yT, xT, N} | ||
unfold!( | ||
y, | ||
insert_singleton_spatial_dimension(x, 5-N), | ||
insert_singleton_spatial_dimension(cdims, 5-N), | ||
) | ||
return y | ||
end | ||
|
||
function fold!(x::AbstractArray{xT, N}, y::AbstractArray{yT, 3}, cdims::DenseConvDims) where {yT, xT, N} | ||
fold!( | ||
insert_singleton_spatial_dimension(x, 5-N), | ||
y, | ||
insert_singleton_spatial_dimension(cdims, 5-N), | ||
) | ||
return x | ||
end | ||
|
||
# 5-dimension in-place versions | ||
function unfold!(y::AbstractArray{yT, 3}, x::AbstractArray{xT, 5}, cdims::DenseConvDims) where {yT, xT} | ||
@threads for batch_idx in 1:size(x, 5) | ||
y_slice = view(y, :, :, batch_idx) | ||
im2col!(y_slice, view(x, :, :, :, :, batch_idx), cdims) | ||
end | ||
return y | ||
end | ||
|
||
function fold!(x::AbstractArray{xT, 5}, y::AbstractArray{yT, 3}, cdims::DenseConvDims) where {xT, yT} | ||
@threads for batch_idx in 1:size(x, 5) | ||
y_slice = view(y, :, :, batch_idx) | ||
col2im!(view(x, :, :, :, :, batch_idx), y_slice, cdims) | ||
end | ||
return x | ||
end | ||
|
||
# reverse diff rules | ||
function rrule(::typeof(unfold), x, cdims::DenseConvDims; kw...) | ||
function unfold_pullback(Δ) | ||
return ( | ||
NoTangent(), | ||
fold(unthunk(Δ), size(x), cdims; kw...), | ||
NoTangent(), | ||
) | ||
end | ||
return unfold(x, cdims; kw...), unfold_pullback | ||
end | ||
|
||
function rrule(::typeof(fold), x, output_size, cdims::DenseConvDims; kw...) | ||
function fold_pullback(Δ) | ||
return ( | ||
NoTangent(), | ||
unfold(unthunk(Δ), cdims; kw...), | ||
NoTangent(), | ||
NoTangent(), | ||
) | ||
end | ||
return fold(x, output_size, cdims; kw...), fold_pullback | ||
end | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,40 @@ | ||
using NNlib, Test | ||
|
||
@testset "unfold wrapper" begin | ||
x = rand(rng, 16, 16, 3, 10) | ||
w = rand(rng, 5, 5, 3, 2) | ||
@test size(NNlib.unfold(x, size(w))) == (144, 75, 10) | ||
@test size(NNlib.unfold(x, size(w); pad=2)) == (256, 75, 10) | ||
@test size(NNlib.unfold(x, size(w); stride=2)) == (36, 75, 10) | ||
@test size(NNlib.unfold(x, size(w); dilation=2)) == (64, 75, 10) | ||
end | ||
|
||
@testset "Inverses: spatial_rank=$spatial_rank" for spatial_rank in (1, 2, 3) | ||
x = rand(rng, repeat([8], spatial_rank)..., 3, 2) | ||
w = rand(rng, repeat([3], spatial_rank)..., 3, 3) | ||
cdims = DenseConvDims(x, w; padding=1) | ||
y = NNlib.unfold(x, cdims) | ||
z = NNlib.fold(y, size(x), cdims) | ||
divisor = NNlib.fold(NNlib.unfold(ones(eltype(x), size(x)...), cdims), size(x), cdims) | ||
@test isapprox(z ./ divisor, x, rtol=1.0e-7) | ||
|
||
# introduce stride | ||
cdims = DenseConvDims(x, w; padding=1, stride=2) | ||
y = NNlib.unfold(x, cdims) | ||
z = NNlib.fold(y, size(x), cdims) | ||
divisor = NNlib.fold(NNlib.unfold(ones(eltype(x), size(x)...), cdims), size(x), cdims) | ||
@test isapprox(z ./ divisor, x, rtol=1.0e-7) | ||
end | ||
|
||
@testset "AutoDiff: spatial_rank=$spatial_rank" for spatial_rank in (1, 2, 3) | ||
x = rand(rng, repeat([5], spatial_rank)..., 3, 2) | ||
w = rand(rng, repeat([3], spatial_rank)..., 3, 3) | ||
cdims = DenseConvDims(x, w) | ||
gradtest(x -> NNlib.unfold(x, cdims), x) | ||
test_rrule(NNlib.unfold, x, cdims) | ||
|
||
y = NNlib.unfold(x, cdims) | ||
gradtest(y -> NNlib.fold(y, size(x), cdims), y) | ||
test_rrule(NNlib.fold, y, size(x), cdims) | ||
end | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters