Skip to content

Furkan-rgb/optuna-integration

This branch is 5 commits ahead of, 45 commits behind optuna/optuna-integration:main.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

c7ad128 · Nov 3, 2024
Oct 25, 2024
Oct 25, 2024
Nov 3, 2024
Oct 25, 2024
Jan 12, 2024
Apr 21, 2023
May 10, 2023
Feb 7, 2023
Feb 27, 2023
Jan 19, 2023
Jan 19, 2023
Oct 25, 2024
Feb 8, 2024
Oct 25, 2024
Nov 14, 2023

Repository files navigation

Optuna-Integration

Python pypi conda GitHub license Codecov Read the Docs

This package is an integration module of Optuna, an automatic Hyperparameter optimization software framework. The modules in this package provide users with extended functionalities for Optuna in combination with third-party libraries such as PyTorch, sklearn, and TensorFlow.

Note

You can find more information in our official documentations and API reference.

Installation

Optuna-Integration is available via pip and on conda.

# PyPI
$ pip install optuna-integration

# Anaconda Cloud
$ conda install -c conda-forge optuna-integration

Important

As dependencies of all the modules are large and complicated, the commands above install only the common dependencies. Dependencies for each module can be installed via pip. For example, if you would like to install the dependencies of optuna_integration.botorch and optuna_integration.lightgbm, you can install them via:

$ pip install optuna-integration[botorch,lightgbm]

Note

Optuna-Integration supports from Python 3.8 to Python 3.12. Optuna Docker image is also provided at DockerHub.

Integration Modules

Here is the table of optuna-integration modules:

Third Party Library Example
BoTorch Unavailable
CatBoost CatBoostPruningCallback
Dask DaskStorage
FastAI FastAIPruningCallback
Keras KerasPruningCallback
LightGBM LightGBMPruningCallback / LightGBMTuner
MLflow MLflowCallback
MXNet Unavailable
PyTorch Distributed TorchDistributedTrial
PyTorch Ignite PyTorchIgnitePruningHandler
PyTorch Lightning PyTorchLightningPruningCallback
pycma Unavailable
SHAP Unavailable
scikit-learn OptunaSearchCV
skorch SkorchPruningCallback
TensorBoard TensorBoardCallback
tf.keras TFKerasPruningCallback
Weights & Biases WeightsAndBiasesCallback
XGBoost XGBoostPruningCallback
AllenNLP* AllenNLPPruningCallback
Chainer* ChainerPruningExtension
ChainerMN* ChainerMNStudy

Warning

* shows deprecated modules and they might be removed in the future.

Communication

Contribution

Any contributions to Optuna-Integration are more than welcome!

For general guidelines how to contribute to the project, take a look at CONTRIBUTING.md.

Reference

If you use Optuna in one of your research projects, please cite our KDD paper "Optuna: A Next-generation Hyperparameter Optimization Framework":

BibTeX
@inproceedings{akiba2019optuna,
  title={{O}ptuna: A Next-Generation Hyperparameter Optimization Framework},
  author={Akiba, Takuya and Sano, Shotaro and Yanase, Toshihiko and Ohta, Takeru and Koyama, Masanori},
  booktitle={The 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
  pages={2623--2631},
  year={2019}
}

About

Extended functionalities for Optuna in combination with third-party libraries.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.6%
  • Shell 0.4%