Skip to content

Commit

Permalink
Update main.py
Browse files Browse the repository at this point in the history
  • Loading branch information
HeavenzFire authored Jan 20, 2025
1 parent 33486f3 commit d86ae1c
Showing 1 changed file with 7 additions and 72 deletions.
79 changes: 7 additions & 72 deletions src/main.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
```
import numpy as np
import tensorflow as tf
from sklearn.decomposition import PCA
Expand Down Expand Up @@ -29,81 +30,15 @@ def machine_learning_model():
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dense(8, activation='relu'),
tf.keras.layers.Dense(8, activation='relu'),
tf.keras.layers.Dense(4, activation='relu'),
tf.keras.layers.Dense(4, activation='relu'),
tf.keras.layers.Dense(2, activation='relu'),
tf.keras.layers.Dense(2, activation='relu'),
tf.keras.layers.Dense(1, activation='relu'),
tf.keras.layers.Dense(1, activation='relu'),
tf.keras.layers.Dense(1, activation='relu'),
tf.keras.layers.Dense(1, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
return model

def nlp_model():
model = tf.keras.Sequential([
tf.keras.layers.Embedding(input_dim=10000, output_dim=64),
tf.keras.layers.LSTM(256, return_sequences=True),
tf.keras.layers.LSTM(256, return_sequences=True),
tf.keras.layers.LSTM(128, return_sequences=True),
tf.keras.layers.LSTM(128, return_sequences=True),
tf.keras.layers.LSTM(64, return_sequences=True),
tf.keras.layers.LSTM(64, return_sequences=True),
tf.keras.layers.LSTM(32, return_sequences=True),
tf.keras.layers.LSTM(32, return_sequences=True),
tf.keras.layers.LSTM(16, return_sequences=True),
tf.keras.layers.LSTM(16, return_sequences=True),
tf.keras.layers.LSTM(8, return_sequences=True),
tf.keras.layers.LSTM(8, return_sequences=True),
tf.keras.layers.LSTM(4, return_sequences=True),
tf.keras.layers.LSTM(4, return_sequences=True),
tf.keras.layers.LSTM(2, return_sequences=True),
tf.keras.layers.LSTM(2, return_sequences=True),
tf.keras.layers.LSTM(1, return_sequences=True),
tf.keras.layers.LSTM(1, return_sequences=True),
tf.keras.layers.LSTM(1),
tf.keras.layers.Dense(1, activation='sigmoid')
tf.keras.layers.Dense(16, activation='relu')
])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
return model

def quantum_error_correction():
def encode(bit):
return [bit, bit, bit]

def decode(bits):
return 1 if sum(bits) > 1 else 0

original_bit = 1
encoded_bits = encode(original_bit)
noisy_bits = [1, 0, 1]
corrected_bit = decode(noisy_bits)
return corrected_bit
# implement quantum error correction logic here
pass

def omnificient_ping():
ping_result = "Omnificient ping executed successfully."
return ping_result

def main():
geometry_result = sacred_geometry_369()
chamber_result = resonant_chamber()
circuit_result = doubling_circuit()
ml_model = machine_learning_model()
nlp_model_instance = nlp_model()
qec_result = quantum_error_correction()
ping_result = omnificient_ping()

print(f"Sacred Geometry 369 Result: {geometry_result}")
print(f"Resonant Chamber Result: {chamber_result}")
print(f"Doubling Circuit Result: {circuit_result}")
print(f"Quantum Error Correction Result: {qec_result}")
print(f"Omnificient Ping Result: {ping_result}")

if __name__ == "__main__":
main()

# implement omnificient ping logic here
pass
```

0 comments on commit d86ae1c

Please sign in to comment.