Skip to content

Commit

Permalink
Merge pull request #2175 from Alizter/ps/rr/remove_implicit_arguments…
Browse files Browse the repository at this point in the history
…_in_trivial_subgroup_and_maximal_subgroup

remove implicit arguments in trivial_subgroup and maximal_subgroup
  • Loading branch information
Alizter authored Jan 3, 2025
2 parents fe2adfe + 298b7ce commit 6c6527d
Show file tree
Hide file tree
Showing 4 changed files with 11 additions and 11 deletions.
2 changes: 1 addition & 1 deletion theories/Algebra/Groups/Kernel.v
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ Defined.

(** ** Characterisation of group embeddings *)
Proposition equiv_kernel_isembedding `{Univalence} {A B : Group} (f : A $-> B)
: (grp_kernel f = trivial_subgroup :> Subgroup A) <~> IsEmbedding f.
: (grp_kernel f = trivial_subgroup A :> Subgroup A) <~> IsEmbedding f.
Proof.
refine (_ oE (equiv_path_subgroup' _ _)^-1%equiv).
apply equiv_iff_hprop_uncurried.
Expand Down
2 changes: 1 addition & 1 deletion theories/Algebra/Groups/ShortExactSequence.v
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,6 @@ Defined.
(** A complex 0 -> A -> B is purely exact if and only if the kernel of the map A -> B is trivial. *)
Definition equiv_grp_isexact_kernel `{Univalence} {A B : Group} (f : A $-> B)
: IsExact purely (grp_trivial_rec A) f
<~> (grp_kernel f = trivial_subgroup :> Subgroup _)
<~> (grp_kernel f = trivial_subgroup A :> Subgroup _)
:= (equiv_kernel_isembedding f)^-1%equiv
oE equiv_iff_hprop_uncurried (iff_grp_isexact_isembedding f).
6 changes: 3 additions & 3 deletions theories/Algebra/Groups/Subgroup.v
Original file line number Diff line number Diff line change
Expand Up @@ -178,7 +178,7 @@ Definition issig_subgroup {G : Group} : _ <~> Subgroup G
:= ltac:(issig).

(** Trivial subgroup *)
Definition trivial_subgroup {G} : Subgroup G.
Definition trivial_subgroup G : Subgroup G.
Proof.
rapply (Build_Subgroup' (fun x => x = mon_unit)).
1: reflexivity.
Expand All @@ -205,7 +205,7 @@ Proof.
Defined.

(** Every group is a (maximal) subgroup of itself *)
Definition maximal_subgroup {G} : Subgroup G.
Definition maximal_subgroup G : Subgroup G.
Proof.
rapply (Build_Subgroup G (fun x => Unit)).
split; auto; exact _.
Expand Down Expand Up @@ -477,7 +477,7 @@ Defined.

(** The property of being the trivial subgroup is useful. *)
Definition IsTrivialSubgroup {G : Group} (H : Subgroup G) : Type :=
forall x, H x <-> trivial_subgroup x.
forall x, H x <-> trivial_subgroup G x.
Existing Class IsTrivialSubgroup.

Global Instance istrivialsubgroup_trivial_subgroup {G : Group}
Expand Down
12 changes: 6 additions & 6 deletions theories/Algebra/Rings/Ideal.v
Original file line number Diff line number Diff line change
Expand Up @@ -143,7 +143,7 @@ End IdealElements.

(** The trivial subgroup is a left ideal. *)
Global Instance isleftideal_trivial_subgroup (R : Ring)
: IsLeftIdeal (R := R) trivial_subgroup.
: IsLeftIdeal (trivial_subgroup R).
Proof.
intros r x p.
rhs_V nrapply (rng_mult_zero_r).
Expand All @@ -152,12 +152,12 @@ Defined.

(** The trivial subgroup is a right ideal. *)
Global Instance isrightideal_trivial_subgroup (R : Ring)
: IsRightIdeal (R := R) trivial_subgroup
: IsRightIdeal (trivial_subgroup R)
:= isleftideal_trivial_subgroup _.

(** The trivial subgroup is an ideal. *)
Global Instance isideal_trivial_subgroup (R : Ring)
: IsIdeal (R := R) trivial_subgroup
: IsIdeal (trivial_subgroup R)
:= {}.

(** We call the trivial subgroup the "zero ideal". *)
Expand All @@ -167,17 +167,17 @@ Definition ideal_zero (R : Ring) : Ideal R := Build_Ideal R _ _.

(** The maximal subgroup is a left ideal. *)
Global Instance isleftideal_maximal_subgroup (R : Ring)
: IsLeftIdeal (R := R) maximal_subgroup
: IsLeftIdeal (maximal_subgroup R)
:= ltac:(done).

(** The maximal subgroup is a right ideal. *)
Global Instance isrightideal_maximal_subgroup (R : Ring)
: IsRightIdeal (R := R) maximal_subgroup
: IsRightIdeal (maximal_subgroup R)
:= isleftideal_maximal_subgroup _.

(** The maximal subgroup is an ideal. *)
Global Instance isideal_maximal_subgroup (R : Ring)
: IsIdeal (R:=R) maximal_subgroup
: IsIdeal (maximal_subgroup R)
:= {}.

(** We call the maximal subgroup the "unit ideal". *)
Expand Down

0 comments on commit 6c6527d

Please sign in to comment.