Skip to content
/ NSGNN Public

This is the code for paper: 'Network Measure-Enriched Graph Neural Networks: A New Benchmark for Power Grid Stability Assessment'

Notifications You must be signed in to change notification settings

JYZHU03/NSGNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Network Measure-Enriched Graph Neural Networks: A New Benchmark for Power Grid Stability Assessment

NSGNN-viz

Can network measures enhance the predictive capability of Graph Neural Networks (GNNs) for the stability of power grids, and can they aid in the generalization of models to real-world networks?

The answer is affirmative. In our paper, we present, for the first time, a benchmark that analyzes 48 network measures within the context of GNN-based stability assessments, introducing two strategies for their integration into the GNN framework: NSGNN-F and NSGNN-S.

Our findings reveal that prioritizing measures with consistent distributions across different grids as inputs or treating measures as auxiliary supervised information significantly improves the model’s generalization ability to realistic grid topologies.

In this NSGNN package we provide several Network Measure encodings and GNN model choices, implementing for both NSGNN-F and NSGNN-S. One can easily try our model with different GNN layer or different combination of network measures. NSGNN is built based on PyG, GraphGym from PyG2, and GraphGPS. We thank them for providing the codes and tools. Specifically PyG v2.2 is required.

Summary of 48 Network Measures

Summary of 48 network measures evaluated, categorized into Nodal and Global types and indexed serially. Each entry includes measure names or definitions with relevant citations.

Nodal

Name / Definition Name / Definition Name / Definition Name / Definition
0. injected power P 1. AP 2. A²P 3. A³P
4. betweenness centrality 5. Katz centrality (networkx) 6. degree centrality 7. A𝔸
8. minimum neighbor degree 9. maximum neighbor degree 10. clustering coefficient 11. A² 𝔸
12. closeness centrality 13. load centrality (networkx) 14. eigenvector centrality 15. A³ 𝔸
16. second-order centrality (networkx) 17. current-flow close centrality 18. sparse sprout 19. bulk
20. harmonic centrality (networkx) 21. square clustering (networkx) 22. Fiedler eigenvector 23. root
24. resistance distance centrality 25. current-flow betweenness centrality 26. inner tree node 27. proper leaf
28. average neighbor degree 29. connected to maximally loaded line 30. degree assortativity 31. graphlets
32. average load of connected lines 33. minimum load of connected lines 34. P assortativity 35. dense sprout
36. random walk structural encoding 37. maximum load of connected lines

Global

Name / Definition Name / Definition Name / Definition Name / Definition
38. eccentricity (networkx) 39. Kirchhoff index 40. power sign ratio 41. transitivity
42. resistance distance Kirchhoff index 43. inverse algebraic connectivity 1/λ₂ 44. eigenratio λ₂/λₙ 45. diameter
46. maximal line load at operation point 47. universal Kuramoto order parameter

Python environment setup with Conda

conda create -n nsgnn python=3.10
conda activate nsgnn

conda install pytorch=1.13 torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
conda install pyg=2.2 -c pyg -c conda-forge
pip install pyg-lib -f https://data.pyg.org/whl/torch-1.13.0+cu117.html

conda install openbabel fsspec rdkit -c conda-forge

pip install pytorch-lightning yacs torchmetrics
pip install tensorboardX
pip install ogb

conda clean --all

Datasets

Our datasets are available on the drive and will be downloaded automatically when you execute our project. Our datasets including dataset20, dataset100, Texas, Spain, Germany, and France power grids.

Category Dataset Graphs Total Nodes Total Edges
SYN Dataset20 10,000 200,000 538,188
Dataset100 10,000 1,000,000 2,857,882
Real / Realistic Texas 1 1,910 5,154
France 1 146 446
Germany 1 438 1,324
Spain 1 98 350

Running NSGNN-F

conda activate nsgnn

# Running NSGNN-F with GraphSAGE layer and random walk structural encoding for training on dataset20 and testing on Texas.
python main.py --cfg configs/NSGNN-F/SAGE-F-tr20teTexas-NRWSE.yaml

# Running NSGNN-F with TAGCN layer and the combination of measures encoding for training on dataset20 and testing on Texas.
python main.py --cfg configs/NSGNN-F/TAGCN-F-tr20teTexas-NetSci.yaml

# Running NSGNN-F with TAGCN layer and random walk structural encoding for training on dataset20 and testing on Texas.
python main.py --cfg configs/NSGNN-F/TAGCN-F-tr20teTexas-NRWSE.yaml

#Running NSGNN-F for only inference.
python main.py --cfg tests/NSGNN-F/TAGCN-F-tr100teTexas-NRWSE-inference.yaml

Running NSGNN-S

conda activate nsgnn
# Running NSGNN-S with ARMA layer with random walk structural encoding
python main.py --cfg configs/NSGNN-S/ARMA-S-tr100teTexas-NRWSE.yaml

# Running NSGNN-S with TAGCN layer with random walk structural encoding
python main.py --cfg configs/NSGNN-S/TAGCN-S-tr100teTexas-NRWSE.yaml

Expected performance

Performance comparison of SNBS prediction methods, quantified by the $R^2$ score in %. The table highlights the top results with emojis:

  • 🥇 First Place
  • 🥈 Second Place
  • 🥉 Third Place
Model Method tr20te100 Tr20 Test Texas Tr20 Test France Tr20 Test Germany Tr20 Test Spain Tr100 Test Texas Tr100 Test France Tr100 Test Germany Tr100 Test Spain
M1 GCN 58.24±0.47 50.17±0.36 60.67±1.27 63.50±0.35 22.47±1.18 48.56±1.02 77.36±1.08 79.31±0.74 65.25±1.21
GraphSAGE 48.93±0.87 25.83±0.42 60.25±2.53 34.18±2.93 9.03±3.44 62.95±4.12 78.63±1.32 73.84±1.68 71.00±1.25
ARMA 67.12±0.80 52.50±2.68 57.36±1.14 75.60±0.21 16.73±9.75 63.95±2.27 88.69±1.22 90.84±0.20 71.12±3.26
TAGCN 66.32±0.74 66.36±1.34 64.08±2.07 72.11±0.67 41.47±0.83 83.31±1.46 90.47±0.53 91.09±0.21 83.47±1.26
GraphGPS 58.61±0.84 62.28±3.17 48.73±6.42 72.62±1.02 39.95±2.58 83.44±0.48 90.60±0.71 90.11±1.01 71.56±0.79
EERM 32.95±3.56 45.41±2.31 24.23±3.17 15.78±3.17 1.24±3.28 48.98±4.37 22.10±3.88 34.65±2.28 2.27±3.19
GeneralGNN 67.69±2.15 72.46±1.76 70.42±1.85 68.23±2.16 63.65±2.16 80.78±1.21 82.17±1.37 82.39±1.28 64.08±1.85
M2 Logreg <0 <0 <0 <0 <0 <0 <0 <0 <0
MLP 46.45±0.65 8.84±5.53 29.12±4.66 10.48±3.11 <0 26.51±2.31 65.79±1.26 44.76±1.50 36.51±2.22
GBR 53.82±0.00 17.36±0.00 46.20±0.00 6.02±0.00 <0 26.84±1.08 69.09±0.14 59.04±0.97 27.43±1.03
GBC 57.02±0.09 <0 44.91±0.66 11.76±0.64 13.26±2.12 <0 63.45±2.10 40.41±0.17 42.53±1.70
Our NSGNN-F (+RW) 🥇 70.18±0.26 🥇 83.14±0.31 🥈 77.88±0.70 🥈 80.53±1.44 🥈 75.68±1.53 🥉 90.36±1.04 🥇 91.69±0.50 🥈 93.56±0.48 🥈 92.10±1.18
NSGNN-F (+Graphlets) 67.33±1.02 55.42±5.13 74.92±0.82 72.39±1.94 🥇 78.79±0.55 🥇 91.18±0.22 90.61±1.05 🥉 92.98±0.20 🥇 92.86±1.05
NSGNN-F (+MND+CC) 🥉 68.35±0.46 77.58±1.27 🥇 78.54±0.90 🥇 81.38±0.63 🥉 72.96±0.43 🥈 90.45±0.30 🥈 91.59±0.58 🥉 93.42±0.79 🥉 86.62±1.30
NSGNN-S (+RW) 🥈 69.56±1.43 🥈 80.97±0.22 🥉 76.51±0.81 77.65±0.52 59.40±0.78 89.59±1.10 86.15±0.56 🥇 93.67±0.27 84.54±0.38
NSGNN-S (+Graphlets) 66.83±1.27 73.30±0.30 54.79±2.51 72.58±0.79 46.14±3.84 87.67±1.66 85.88±0.38 89.90±0.57 82.52±0.99
NSGNN-S (+MND+CC) 67.45±0.57 🥉 80.02±0.66 73.19±0.61 🥉 77.75±0.94 54.12±1.40 87.72±0.90 89.98±1.22 91.25±0.62 71.83±0.40

About

This is the code for paper: 'Network Measure-Enriched Graph Neural Networks: A New Benchmark for Power Grid Stability Assessment'

Resources

Stars

Watchers

Forks

Languages