Skip to content

Derangements #150

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
May 10, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 39 additions & 2 deletions src/permutations.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
#Permutations

export
derangements,
levicivita,
multiset_permutations,
nthperm!,
Expand Down Expand Up @@ -136,6 +137,42 @@ function permutations(a, t::Integer)
return Permutations(a, t)
end

"""
derangements(a)

Generate all derangements of an indexable object `a` in lexicographic order.
Because the number of derangements can be very large, this function returns an iterator object.
Use `collect(derangements(a))` to get an array of all derangements.
Only works for `a` with defined length.

# Examples
```jldoctest
julia> derangements("julia") |> collect
44-element Vector{Vector{Char}}:
['u', 'j', 'i', 'a', 'l']
['u', 'j', 'a', 'l', 'i']
['u', 'l', 'j', 'a', 'i']
['u', 'l', 'i', 'a', 'j']
['u', 'l', 'a', 'j', 'i']
['u', 'i', 'j', 'a', 'l']
['u', 'i', 'a', 'j', 'l']
['u', 'i', 'a', 'l', 'j']
['u', 'a', 'j', 'l', 'i']
['u', 'a', 'i', 'j', 'l']
['a', 'j', 'i', 'l', 'u']
['a', 'l', 'j', 'u', 'i']
['a', 'l', 'u', 'j', 'i']
['a', 'l', 'i', 'j', 'u']
['a', 'l', 'i', 'u', 'j']
['a', 'i', 'j', 'u', 'l']
['a', 'i', 'j', 'l', 'u']
['a', 'i', 'u', 'j', 'l']
['a', 'i', 'u', 'l', 'j']
```
"""
derangements(a) = (d for d in multiset_permutations(a, length(a)) if all(t -> t[1] != t[2], zip(a, d)))


function nextpermutation(m, t, state)
perm = [m[state[i]] for i in 1:t]
Expand Down Expand Up @@ -249,8 +286,8 @@ julia> collect(multiset_permutations([1,1,2], 3))
```
"""
function multiset_permutations(a, t::Integer)
m = unique(collect(a))
f = [sum([c == x for c in a]) for x in m]
m = unique(a)
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This call to collect is unnecessary because unique already collects the items into a new vector.

Benchmark Benchmark improves to
julia> @benchmark multiset_permutations($a)
BenchmarkTools.Trial: 10000 samples with 27 evaluations per sample.
 Range (min  max):  930.074 ns  160.078 μs  ┊ GC (min  max):  0.00%  98.59%
 Time  (median):     956.333 ns               ┊ GC (median):     0.00%
 Time  (mean ± σ):     1.094 μs ±   3.083 μs  ┊ GC (mean ± σ):  10.17% ±  4.00%

  ▅█▇▅▃▁     ▁                                                  ▂
  ███████▇▆▇████▇▆▇▅▅▅▅▄▄▁▁▃▃▃▄▁▁▄▁▃▄▃▃▁▅▅▁▃▄▅▄▇▇▆▅▃▅▅▆▅▅▅▅▄▅▅▄ █
  930 ns        Histogram: log(frequency) by time       1.75 μs <

 Memory estimate: 2.16 KiB, allocs estimate: 33.

f = [sum(c == x for c in a)::Int for x in m]
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Here I also removed the square brackets to turn the comprehension into a generator expression, which is ever so slightly more efficient, as can be verified by benchmarking.

Benchmark
julia> a = repeat(1:10, 3);

With comprehension:

julia> @benchmark multiset_permutations($a)
BenchmarkTools.Trial: 10000 samples with 10 evaluations per sample.
 Range (min  max):  1.284 μs   1.236 ms  ┊ GC (min  max):  0.00%  99.62%
 Time  (median):     1.350 μs              ┊ GC (median):     0.00%
 Time  (mean ± σ):   1.921 μs ± 16.533 μs  ┊ GC (mean ± σ):  12.11% ±  1.41%

  ▆█▇▄▂                   ▁   ▁▂ ▁▂▂▁▁▂▃▂▁▂▂▂▁▁▁▁▁           ▁
  █████▇▆▅▅▄▅▇▇▇▅▆▄▅▅▇▆▅▅▇██▇█████████████████████████▇▇▇▇▆▅ █
  1.28 μs      Histogram: log(frequency) by time     3.07 μs <

 Memory estimate: 3.39 KiB, allocs estimate: 55.

With generator expression:

julia> @benchmark multiset_permutations($a)
BenchmarkTools.Trial: 10000 samples with 22 evaluations per sample.
 Range (min  max):  943.545 ns  462.770 μs  ┊ GC (min  max):  0.00%  99.37%
 Time  (median):     976.227 ns               ┊ GC (median):     0.00%
 Time  (mean ± σ):     1.251 μs ±   5.907 μs  ┊ GC (mean ± σ):  13.38% ±  3.54%

  ▇█▄▁   ▁              ▁ ▂▂▁▂▁▂▁▁▁                             ▂
  ████▇▇████▇▆▅▄▃▁▁▁▁▄▆▆█████████████▇▇▆▆▆▄▄▄▄▁▄▄▄▃▅▄▃▃▁▄▄▁▃▁▁▅ █
  944 ns        Histogram: log(frequency) by time       2.54 μs <

 Memory estimate: 2.45 KiB, allocs estimate: 35.

multiset_permutations(m, f, t)
end

Expand Down
12 changes: 12 additions & 0 deletions test/permutations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,18 @@ end
@test collect(multiset_permutations("", -1)) == Any[]
@test length(multiset_permutations("aaaaaaaaaaaaaaaaaaaaab", 21)) == 22

# derangements
@test length(collect(derangements(1:4))) == 9
@test length(collect(derangements(1:8))) == derangement(8) == 14833
@test collect(derangements([])) == [[]]
@test collect(derangements(Int[])) == [Int[]]
@test collect(derangements([1])) == Vector{Int}[]
@test collect(derangements([1, 1])) == Vector{Int}[]
@test collect(derangements([1, 1, 2])) == Vector{Int}[]
@test collect(derangements([1, 1, 2, 2])) == [[2, 2, 1, 1]]
@test map(join, derangements("aabbc")) == ["bbaca", "bbcaa", "bcaab", "cbaab"]
@test map(join, derangements("aaabbbc")) == ["bbbaaca", "bbbacaa", "bbbcaaa", "bbcaaab", "bcbaaab", "cbbaaab"]

#nthperm!
for n = 0:7, k = 1:factorial(n)
p = nthperm!([1:n;], k)
Expand Down
Loading