This project aims to create a benchmark dataset for tabletop manipulation that extracts action-state pair
Pipeline includes
stable diffusion image generation --> TripoSR 3D modeling --> Maniskill2 object manipulation pipeline --> output data in json
# To save
from scipy import sparse
mask_sparse = sparse.csr_matrix(seg_before)
sparse.save_npz('mask_sparse.npz', mask_sparse)
# To Load
from scipy.sparse import load_npz
mask_sparse = load_npz('mask_sparse.npz')
mask = mask_sparse.toarray()
{
"initial_img": initial/0,
"result_img": result/0,
"initial_seg": seg/0,
"result_seg": seg/1
"obj_id": [(red cube", 1)]
"target_object": "red cube",
"direction": "forward"
}
{
"initial_img": initial/0,
"result_img": result/0,
"obj_ids": [("blue cube", 1), ("green cube", 2)]
"initial_object": "blue cube",
"target_object": "green cube",
"direction": "front"
}
{
"initial_img": initial/0,
"result_img": result/0,
"first_object": "blue cube",
"between_object": "red cube",
"second_object": "green cube",
}
{
"initial_img": initial/0,
"result_img": result/0,
"target_object": "blue cube"
}
{
"initial_img": initial/0,
"result_img": result/0,
"order": ["blue", "red", "black"]
}
--------- wait for now ---------
{
"initial_img": initial/0,
"result_img": result/0,
"order": ["red cube", "object"]
}
--------- wait for now ---------
{
"initial_img": initial/0,
"result_img": [result/0_1, result/0_2, result/0_3]
"direction": "left",
"object": "red cube"
}
{
"initial_img": initial/0,
"result_img": [result/0_1, result/0_2, result/0_3]
"initial_object": "red cube"
"target_object": "green cube",
}