Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bump the pip group across 3 directories with 6 updates #21

Conversation

dependabot[bot]
Copy link

@dependabot dependabot bot commented on behalf of github May 20, 2024

Bumps the pip group with 2 updates in the /Exploration - Document Image Quality Assessment directory: numpy and scikit-learn.
Bumps the pip group with 6 updates in the /Exploration - Document Segmentation directory:

Package From To
tensorflow-gpu 1.13.1 2.12.0
opencv-python 4.0.1.23 4.2.0.32
numpy 1.16.2 1.22.0
scikit-learn 0.20.3 0.23.1
tqdm 4.31.1 4.66.3
requests 2.21.0 2.32.0

Bumps the pip group with 2 updates in the /Exploration - Document Type Classification directory: numpy and scikit-learn.

Updates numpy from 1.16.2 to 1.22.0

Release notes

Sourced from numpy's releases.

v1.22.0

NumPy 1.22.0 Release Notes

NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

  • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
  • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
  • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
  • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
  • A new configurable allocator for use by downstream projects.

These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

Expired deprecations

Deprecated numeric style dtype strings have been removed

Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

(gh-19539)

Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

(gh-19615)

... (truncated)

Commits

Updates scikit-learn from 0.20.3 to 0.23.1

Release notes

Sourced from scikit-learn's releases.

scikit-learn 0.23.1

We're happy to announce the 0.23.1 release which fixes a few issues affecting many users, namely: K-Means should be faster for small sample sizes, and the representation of third-party estimators was fixed.

You can check this version out using:

    pip install -U scikit-learn

You can see the changelog here: https://scikit-learn.org/stable/whats_new/v0.23.html#version-0-23-1 The conda-forge builds will be available shortly, which you can then install using:

    conda install -c conda-forge scikit-learn

scikit-learn 0.23.0

We're happy to announce the 0.23 release. You can read the release highlights under https://scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_0_23_0.html and the long version of the change log under https://scikit-learn.org/stable/whats_new/v0.23.html#version-0-23-0

This version supports Python versions 3.6 to 3.8.

Scikit-learn 0.22.2.post1

We're happy to announce the 0.22.2.post1 bugfix release.

The 0.22.2.post1 release includes a packaging fix for the source distribution but the content of the packages is otherwise identical to the content of the wheels with the 0.22.2 version (without the .post1 suffix).

Change log under https://scikit-learn.org/stable/whats_new/v0.22.html#changes-0-22-2.

This version supports Python versions 3.5 to 3.8.

Scikit-learn 0.22.1

We're happy to announce the 0.22.1 bugfix release. Change log under https://scikit-learn.org/stable/whats_new/v0.22.html#changes-0-22-1.

This version supports Python versions 3.5 to 3.8.

Scikit-learn 0.22.0

We're happy to announce the 0.22 release. You can read the release highlights under https://scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_0_22_0.html and the long version of the change log under https://scikit-learn.org/stable/whats_new/v0.22.html#changes-0-22.

This version supports Python versions 3.5 to 3.8.

Scikit-learn 0.21.3

A bug fix and documentation release, fixing regressions and other issues released in version 0.21. See change log at https://scikit-learn.org/0.21/whats_new/v0.21.html

Scikit-learn 0.21.2

This version fixes a few bugs released in 0.21.1.

Scikit-learn version 0.21.1

... (truncated)

Commits

Updates tensorflow-gpu from 1.13.1 to 2.12.0

Release notes

Sourced from tensorflow-gpu's releases.

TensorFlow 2.12.0

Release 2.12.0

TensorFlow

Breaking Changes

  • Build, Compilation and Packaging

    • Removed redundant packages tensorflow-gpu and tf-nightly-gpu. These packages were removed and replaced with packages that direct users to switch to tensorflow or tf-nightly respectively. Since TensorFlow 2.1, the only difference between these two sets of packages was their names, so there is no loss of functionality or GPU support. See https://pypi.org/project/tensorflow-gpu for more details.
  • tf.function:

    • tf.function now uses the Python inspect library directly for parsing the signature of the Python function it is decorated on. This change may break code where the function signature is malformed, but was ignored previously, such as:
      • Using functools.wraps on a function with different signature
      • Using functools.partial with an invalid tf.function input
    • tf.function now enforces input parameter names to be valid Python identifiers. Incompatible names are automatically sanitized similarly to existing SavedModel signature behavior.
    • Parameterless tf.functions are assumed to have an empty input_signature instead of an undefined one even if the input_signature is unspecified.
    • tf.types.experimental.TraceType now requires an additional placeholder_value method to be defined.
    • tf.function now traces with placeholder values generated by TraceType instead of the value itself.
  • Experimental APIs tf.config.experimental.enable_mlir_graph_optimization and tf.config.experimental.disable_mlir_graph_optimization were removed.

Major Features and Improvements

  • Support for Python 3.11 has been added.

  • Support for Python 3.7 has been removed. We are not releasing any more patches for Python 3.7.

  • tf.lite:

    • Add 16-bit float type support for built-in op fill.
    • Transpose now supports 6D tensors.
    • Float LSTM now supports diagonal recurrent tensors: https://arxiv.org/abs/1903.08023
  • tf.experimental.dtensor:

    • Coordination service now works with dtensor.initialize_accelerator_system, and enabled by default.
    • Add tf.experimental.dtensor.is_dtensor to check if a tensor is a DTensor instance.
  • tf.data:

    • Added support for alternative checkpointing protocol which makes it possible to checkpoint the state of the input pipeline without having to store the contents of internal buffers. The new functionality can be enabled through the experimental_symbolic_checkpoint option of tf.data.Options().
    • Added a new rerandomize_each_iteration argument for the tf.data.Dataset.random() operation, which controls whether the sequence of generated random numbers should be re-randomized every epoch or not (the default behavior). If seed is set and rerandomize_each_iteration=True, the random() operation will produce a different (deterministic) sequence of numbers every epoch.
    • Added a new rerandomize_each_iteration argument for the tf.data.Dataset.sample_from_datasets() operation, which controls whether the sequence of generated random numbers used for sampling should be re-randomized every epoch or not. If seed is set and rerandomize_each_iteration=True, the sample_from_datasets() operation will use a different (deterministic) sequence of numbers every epoch.
  • tf.test:

    • Added tf.test.experimental.sync_devices, which is useful for accurately measuring performance in benchmarks.
  • tf.experimental.dtensor:

... (truncated)

Changelog

Sourced from tensorflow-gpu's changelog.

Release 2.12.0

Breaking Changes

  • Build, Compilation and Packaging

    • Removed redundant packages tensorflow-gpu and tf-nightly-gpu. These packages were removed and replaced with packages that direct users to switch to tensorflow or tf-nightly respectively. Since TensorFlow 2.1, the only difference between these two sets of packages was their names, so there is no loss of functionality or GPU support. See https://pypi.org/project/tensorflow-gpu for more details.
  • tf.function:

    • tf.function now uses the Python inspect library directly for parsing the signature of the Python function it is decorated on. This change may break code where the function signature is malformed, but was ignored previously, such as:
      • Using functools.wraps on a function with different signature
      • Using functools.partial with an invalid tf.function input
    • tf.function now enforces input parameter names to be valid Python identifiers. Incompatible names are automatically sanitized similarly to existing SavedModel signature behavior.
    • Parameterless tf.functions are assumed to have an empty input_signature instead of an undefined one even if the input_signature is unspecified.
    • tf.types.experimental.TraceType now requires an additional placeholder_value method to be defined.
    • tf.function now traces with placeholder values generated by TraceType instead of the value itself.
  • Experimental APIs tf.config.experimental.enable_mlir_graph_optimization and tf.config.experimental.disable_mlir_graph_optimization were removed.

Major Features and Improvements

  • Support for Python 3.11 has been added.

  • Support for Python 3.7 has been removed. We are not releasing any more patches for Python 3.7.

  • tf.lite:

    • Add 16-bit float type support for built-in op fill.
    • Transpose now supports 6D tensors.
    • Float LSTM now supports diagonal recurrent tensors: https://arxiv.org/abs/1903.08023
  • tf.experimental.dtensor:

    • Coordination service now works with dtensor.initialize_accelerator_system, and enabled by default.
    • Add tf.experimental.dtensor.is_dtensor to check if a tensor is a DTensor instance.
  • tf.data:

    • Added support for alternative checkpointing protocol which makes it possible to checkpoint the state of the input pipeline without having to store the contents of internal buffers. The new functionality can be enabled through the experimental_symbolic_checkpoint option of tf.data.Options().
    • Added a new rerandomize_each_iteration argument for the tf.data.Dataset.random() operation, which controls whether the sequence of generated random numbers should be re-randomized every epoch or not (the default behavior). If seed is set and rerandomize_each_iteration=True, the random() operation will produce a different (deterministic) sequence of numbers every epoch.
    • Added a new rerandomize_each_iteration argument for the tf.data.Dataset.sample_from_datasets() operation, which controls whether the sequence of generated random numbers used for sampling should be re-randomized every epoch or not. If seed is set and rerandomize_each_iteration=True, the sample_from_datasets() operation will use a different (deterministic) sequence of numbers every epoch.
  • tf.test:

    • Added tf.test.experimental.sync_devices, which is useful for accurately measuring performance in benchmarks.
  • tf.experimental.dtensor:

    • Added experimental support to ReduceScatter fuse on GPU (NCCL).

... (truncated)

Commits
  • 0db597d Merge pull request #60051 from tensorflow/venkat2469-patch-1
  • 1a12f59 Update RELEASE.md
  • aa4d558 Merge pull request #60050 from tensorflow/venkat-patch-6
  • bd1ab8a Update the security section in RELEASE.md
  • 4905be0 Merge pull request #60049 from tensorflow/venkat-patch-5
  • 9f96caa Update setup.py on TF release branch with released version of Estimator and k...
  • e719b6b Update Relese.md (#60033)
  • 64a9d54 Merge pull request #60017 from tensorflow/joefernandez-patch-2.12-release-notes
  • 7a4ebfd Update RELEASE.md
  • e0e10a9 Merge pull request #59988 from tensorflow-jenkins/version-numbers-2.12.0-8756
  • Additional commits viewable in compare view

Updates opencv-python from 4.0.1.23 to 4.2.0.32

Release notes

Sourced from opencv-python's releases.

4.2.0.32

OpenCV version 4.2.0.

Changes:

  • macOS environment updated from xcode8.3 to xcode 9.4
  • macOS uses now Qt 5 instead of Qt 4
  • Nasm version updated to Docker containers
  • multibuild updated

Fixes:

  • don't use deprecated brew tap-pin, instead refer to the full package name when installing #267
  • replace get_config_var() with get_config_vars() in setup.py #274
  • add workaround for DLL errors in Windows Server #264

4.1.2.30

OpenCV version 4.1.2.

Changes:

  • Python 3.8 builds added to the build matrix
  • Support for Python 3.4 builds dropped (Python 3.4 is in EOL)
  • multibuild updated
  • minor build logic changes
  • Docker images rebuilt

Notes:

Please note that Python 2.7 enters into EOL phase in January 2020. opencv-python Python 2.7 wheels won't be provided after that.

4.1.1.26

OpenCV version 4.1.1.

Changes:

... (truncated)

Commits

Updates numpy from 1.16.2 to 1.22.0

Release notes

Sourced from numpy's releases.

v1.22.0

NumPy 1.22.0 Release Notes

NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

  • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
  • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
  • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
  • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
  • A new configurable allocator for use by downstream projects.

These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

Expired deprecations

Deprecated numeric style dtype strings have been removed

Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

(gh-19539)

Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

(gh-19615)

... (truncated)

Commits

Updates scikit-learn from 0.20.3 to 0.23.1

Release notes

Sourced from scikit-learn's releases.

scikit-learn 0.23.1

We're happy to announce the 0.23.1 release which fixes a few issues affecting many users, namely: K-Means should be faster for small sample sizes, and the representation of third-party estimators was fixed.

You can check this version out using:

    pip install -U scikit-learn

You can see the changelog here: https://scikit-learn.org/stable/whats_new/v0.23.html#version-0-23-1 The conda-forge builds will be available shortly, which you can then install using:

    conda install -c conda-forge scikit-learn

scikit-learn 0.23.0

We're happy to announce the 0.23 release. You can read the release highlights under https://scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_0_23_0.html and the long version of the change log under https://scikit-learn.org/stable/whats_new/v0.23.html#version-0-23-0

This version supports Python versions 3.6 to 3.8.

Scikit-learn 0.22.2.post1

We're happy to announce the 0.22.2.post1 bugfix release.

The 0.22.2.post1 release includes a packaging fix for the source distribution but the content of the packages is otherwise identical to the content of the wheels with the 0.22.2 version (without the .post1 suffix).

Change log under https://scikit-learn.org/stable/whats_new/v0.22.html#changes-0-22-2.

This version supports Python versions 3.5 to 3.8.

Scikit-learn 0.22.1

We're happy to announce the 0.22.1 bugfix release. Change log under https://scikit-learn.org/stable/whats_new/v0.22.html#changes-0-22-1.

This version supports Python versions 3.5 to 3.8.

Scikit-learn 0.22.0

We're happy to announce the 0.22 release. You can read the release highlights under https://scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_0_22_0.html and the long version of the change log under https://scikit-learn.org/stable/whats_new/v0.22.html#changes-0-22.

This version supports Python versions 3.5 to 3.8.

Scikit-learn 0.21.3

A bug fix and documentation release, fixing regressions and other issues released in version 0.21. See change log at https://scikit-learn.org/0.21/whats_new/v0.21.html

Scikit-learn 0.21.2

This version fixes a few bugs released in 0.21.1.

Scikit-learn version 0.21.1

... (truncated)

Commits

Updates tqdm from 4.31.1 to 4.66.3

Release notes

Sourced from tqdm's releases.

tqdm v4.66.3 stable

tqdm v4.66.2 stable

  • pandas: add DataFrame.progress_map (#1549)
  • notebook: fix HTML padding (#1506)
  • keras: fix resuming training when verbose>=2 (#1508)
  • fix format_num negative fractions missing leading zero (#1548)
  • fix Python 3.12 DeprecationWarning on import (#1519)
  • linting: use f-strings (#1549)
  • update tests (#1549)
  • CI: bump actions (#1549)

tqdm v4.66.1 stable

  • fix utils.envwrap types (#1493 <- #1491, #1320 <- #966, #1319)
    • e.g. cloudwatch & kubernetes workaround: export TQDM_POSITION=-1
  • drop mentions of unsupported Python versions

tqdm v4.66.0 stable

  • environment variables to override defaults (TQDM_*) (#1491 <- #1061, #950 <- #614, #1318, #619, #612, #370)
    • e.g. in CI jobs, export TQDM_MININTERVAL=5 to avoid log spam
    • add tests & docs for tqdm.utils.envwrap
  • fix & update CLI completion
  • fix & update API docs
  • minor code tidy: replace os.path => pathlib.Path
  • fix docs image hosting
  • release with CI bot account again (cli/cli#6680)

tqdm v4.65.2 stable

  • exclude examples from distributed wheel (#1492)

tqdm v4.65.1 stable

  • migrate setup.{cfg,py} => pyproject.toml (#1490)
    • fix asv benchmarks
    • update docs
  • fix snap build (#1490)
  • fix & update tests (#1490)
    • fix flaky notebook tests
    • bump pre-commit
    • bump workflow actions

tqdm v4.65.0 stable

  • add Python 3.11 and drop Python 3.6 support (#1439, #1419, #502 <- #720, #620)
  • misc code & docs tidy
  • fix & update CI workflows & tests

tqdm v4.64.1 stable

... (truncated)

Commits

Updates requests from 2.21.0 to 2.32.0

Release notes

Sourced from requests's releases.

v2.32.0

2.32.0 (2024-05-20)

🐍 PYCON US 2024 EDITION 🐍

Security

  • Fixed an issue where setting verify=False on the first request from a Session will cause subsequent requests to the same origin to also ignore cert verification, regardless of the value of verify. (GHSA-9wx4-h78v-vm56)

Improvements

  • verify=True now reuses a global SSLContext which should improve request time variance between first and subsequent requests. It should also minimize certificate load time on Windows systems when using a Python version built with OpenSSL 3.x. (#6667)
  • Requests now supports optional use of character detection (chardet or charset_normalizer) when repackaged or vendored. This enables pip and other projects to minimize their vendoring surface area. The Response.text() and apparent_encoding APIs will default to utf-8 if neither library is present. (#6702)

Bugfixes

  • Fixed bug in length detection where emoji length was incorrectly calculated in the request content-length. (#6589)
  • Fixed deserialization bug in JSONDecodeError. (#6629)
  • Fixed bug where an extra leading / (path separator) could lead urllib3 to unnecessarily reparse the request URI. (#6644)

Deprecations

  • Requests has officially added support for CPython 3.12 (#6503)
  • Requests has officially added support for PyPy 3.9 and 3.10 (#6641)
  • Requests has officially dropped support for CPython 3.7 (#6642)
  • Requests has officially dropped support for PyPy 3.7 and 3.8 (#6641)

Documentation

  • Various typo fixes and doc improvements.

Packaging

  • Requests has started adopting some modern packaging practices. The source files for the projects (formerly requests) is now located in src/requests in the Requests sdist. (#6506)
  • Starting in Requests 2.33.0, Requests will migrate to a PEP 517 build system using hatchling. This should not impact the average user, but extremely old versions of packaging utilities may have issues with the new packaging format.

New Contributors

... (truncated)

Changelog

Sourced from requests's changelog.

2.32.0 (2024-05-20)

Security

  • Fixed an issue where setting verify=False on the first request from a Session will cause subsequent requests to the same origin to also ignore cert verification, regardless of the value of verify. (GHSA-9wx4-h78v-vm56)

Improvements

  • verify=True now reuses a global SSLContext which should improve request time variance between first and subsequent requests. It should also minimize certificate load time on Windows systems when using a Python version built with OpenSSL 3.x. (#6667)
  • Requests now supports optional use of character detection (chardet or charset_normalizer) when repackaged or vendored. This enables pip and other projects to minimize their vendoring surface area. The Response.text() and apparent_encoding APIs will default to utf-8 if neither library is present. (#6702)

Bugfixes

  • Fixed bug in length detection where emoji length was incorrectly calculated in the request content-length. (#6589)
  • Fixed deserialization bug in JSONDecodeError. (#6629)
  • Fixed bug where an extra leading / (path separator) could lead urllib3 to unnecessarily reparse the request URI. (#6644)

Deprecations

  • Requests has officially added support for CPython 3.12 (#6503)
  • Requests has officially added support for PyPy 3.9 and 3.10 (#6641)
  • Requests has officially dropped support for CPython 3.7 (#6642)
  • Requests has officially dropped support for PyPy 3.7 and 3.8 (#6641)

Documentation

  • Various typo fixes and doc improvements.

Packaging

  • Requests has started adopting some modern packaging practices. The source files for the projects (formerly requests) is now located in src/requests in the Requests sdist. (#6506)
  • Starting in Requests 2.33.0, Requests will migrate to a PEP 517 build system using hatchling. This should not impact the average user, but extremely old versions of packaging utilities may have issues with the new packaging format.

2.31.0 (2023-05-22)

Security

... (truncated)

Commits
  • d6ebc4a v2.32.0
  • 9a40d12 Avoid reloading root certificates to improve concurrent performance (#6667)
  • 0c030f7 Merge pull request #6702 from nateprewitt/no_char_detection
  • 555b870 Allow character detection dependencies to be optional in post-packaging steps
  • d6dded3 Merge pull request #6700 from franekmagiera/update-redirect-to-invalid-uri-test
  • bf24b7d Use an invalid URI that will not cause httpbin to throw 500
  • 2d5f547 Pin 3.8 and 3.9 runners back to macos-13 (#6688)
  • f1bb07d Merge pull request #6687 from psf/dependabot/github_actions/github/codeql-act...
  • 60047ad Bump github/codeql-action from 3.24.0 to 3.25.0
  • 31ebb81 Merge pull request #6682 from frenzymadness/pytest8
  • Additional commits viewable in compare view

Updates numpy from 1.16.2 to 1.22.0

Release notes

Sourced from numpy's releases.

v1.22.0

NumPy 1.22.0 Release Notes

NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

  • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
  • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
  • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
  • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
  • A new configurable allocator for use by downstream projects.

These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

Expired deprecations

Deprecated numeric style dtype strings have been removed

Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

(gh-19539)

Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

(gh-19615)

... (truncated)

Commits

Updates scikit-learn from 0.20.3 to 0.23.1

Release notes

Sourced from scikit-learn's releases.

scikit-learn 0.23.1

We're happy to announce the 0.23.1 release which fixes a few issues affecting many users, namely: K-Means should be faster for small sample sizes, and the representation of third-party estimators was fixed.

You can check this version out using:

    pip install -U scikit-learn

You can see the changelog here: https://scikit-learn.org/stable/whats_new/v0.23.html#version-0-23-1 The conda-forge builds will be available shortly, which you can then install using:

    conda install -c conda-forge scikit-learn

scikit-learn 0.23.0

We're happy to announce the 0.23 release. You can read the release highlights under https://scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_0_23_0.html and the long version of the change log under https://scikit-learn.org/stable/whats_new/v0.23.html#version-0-23-0

This version supports Python versions 3.6 to 3.8.

Scikit-learn 0.22.2.post1

We're happy to announce the 0.22.2.post1 bugfix release.

The 0.22.2.post1 release includes a packaging fix for the source distribution but the content of the packages is otherwise identical to the content of the wheels with the 0.22.2 version (without the .post1 suffix).

Change log under https://scikit-learn.org/stable/whats_new/v0.22.html#changes-0-22-2.

This version supports Python versions 3.5 to 3.8.

Scikit-learn 0.22.1

We're happy to announce the 0.22.1 bugfix release. Change log under https://scikit-learn.org/stable/whats_new/v0.22.html#changes-0-22-1.

This version supports Python versions 3.5 to 3.8.

Scikit-learn 0.22.0

We're happy to announce the 0.22 release. You can read the release highlights under https://scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_0_22_0.html and the long version of the change log under https://scikit-learn.org/stable/whats_new/v0.22.html#changes-0-22.

This version supports Python versions 3.5 to 3.8.

Scikit-learn 0.21.3

A bug fix and documentation release, fixing regressions and other issues released in version 0.21. See change log at https://scikit-learn.org/0.21/whats_new/v0.21.html

Scikit-learn 0.21.2

This version fixes a few bugs released in 0.21.1.

Scikit-learn version 0.21.1

... (truncated)

Commits

updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
  dependency-group: pip
- dependency-name: scikit-learn
  dependency-type: direct:production
  dependency-group: pip
- dependency-name: tensorflow-gpu
  dependency-type: direct:production
  dependency-group: pip
- dependency-name: opencv-python
  dependency-type: direct:production
  dependency-group: pip
- dependency-name: numpy
  dependency-type: direct:production
  dependency-group: pip
- dependency-name: scikit-learn
  dependency-type: direct:production
  dependency-group: pip
- dependency-name: tqdm
  dependency-type: direct:production
  dependency-group: pip
- dependency-name: requests
  dependency-type: direct:production
  dependency-group: pip
- dependency-name: numpy
  dependency-type: direct:production
  dependency-group: pip
- dependency-name: scikit-learn
  dependency-type: direct:production
  dependency-group: pip
...

Signed-off-by: dependabot[bot] <[email protected]>
Copy link
Author

dependabot bot commented on behalf of github Jun 17, 2024

Superseded by #22.

@dependabot dependabot bot closed this Jun 17, 2024
@dependabot dependabot bot deleted the dependabot/pip/Exploration---Document-Image-Quality-Assessment/pip-eede0eb8f6 branch June 17, 2024 22:56
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
dependencies Pull requests that update a dependency file
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants