- authors GCN : Thomas N. Kipf , Max Welling
- authors GAT: Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Arantxa Casanova, Pietro Lio, Yoshua Bengio
- link: https://arxiv.org/abs/1609.02907
- link: https://arxiv.org/abs/1710.10903
- file structure:
└── cresci-2015,Twibot-20,Twibot-22
├── main.py # train model on the processed data
├── dataset.py # preprocess data
├── utils.py
└── model.py # load GCN/GAT model
-
specify the dataset by running
dataset=Twibot-22
in Dataset.py (Twibot-22 for example) ; -
change the model in the model.py
-
train model by running:
python main.py
random seed: 100, 200, 300, 400, 500
GCN
dataset | acc | precison | recall | f1 | |
---|---|---|---|---|---|
Cresci-2015 | mean | 0.9637 | 0.9559 | 0.9881 | 0.9717 |
Cresci-2015 | std | 0.0057 | 0.0069 | 0.0020 | 0.0043 |
Twibot-20 | mean | 0.7753 | 0.7523 | 0.8762 | 0.8086 |
Twibot-20 | std | 0.0173 | 0.0308 | 0.0331 | 0.0068 |
Twibot-22 | mean | 0.7839 | 0.7119 | 0.4480 | 0.5496 |
Twibot-22 | std | 0.0009 | 0.0128 | 0.0171 | 0.0091 |
GAT
dataset | acc | precison | recall | f1 | |
---|---|---|---|---|---|
Cresci-2015 | mean | 0.9689 | 0.9610 | 0.9911 | 0.9758 |
Cresci-2015 | std | 0.0021 | 0.0071 | 0.0051 | 0.0015 |
Twibot-20 | mean | 0.8327 | 0.8139 | 0.8953 | 0.8525 |
Twibot-20 | std | 0.0056 | 0.0118 | 0.0087 | 0.0038 |
Twibot-22 | mean | 0.7948 | 0.7623 | 0.4412 | 0.5586 |
Twibot-22 | std | 0.0009 | 0.0139 | 0.0165 | 0.0101 |
baseline | acc on Twibot-22 | f1 on Twibot-22 | type | tags |
---|---|---|---|---|
Kipf et al. | 0.7839 | 0.5496 | F T G | Graph Neural Network |
Velickovic et al. | 0.7948 | 0.5586 | F T G | Graph Neural Network |