[CVPR 2025] Tra-MoE: Learning Trajectory Prediction Model from Multiple Domains for Adaptive Policy Conditioning
Jiange Yang, Haoyi Zhu, Yating Wang, Gangshan Wu, Tong He, Liming Wang
The videos are all done automatically by learned policy (Learn from human and robot data).
Fold | Pick and Pass | Pour |
---|---|---|
![]() |
![]() |
![]() |
Pull out | Push |
---|---|
![]() |
![]() |
conda env create -f environment.yml
conda activate atm
mkdir third_party & cd third_party
git clone https://github.com/ARISE-Initiative/robomimic.git
git clone https://github.com/ARISE-Initiative/robosuite.git
pip install -e third_party/robosuite/
pip install -e third_party/robomimic/
mkdir data
python -m scripts.download_libero_datasets
python -m scripts.preprocess_libero --suite libero_spatial
python -m scripts.preprocess_libero --suite libero_object
python -m scripts.preprocess_libero --suite libero_goal
python -m scripts.preprocess_libero --suite libero_10
python -m scripts.preprocess_libero --suite libero_90
python -m scripts.split_libero_dataset
- Stage 1: Training trajectory prediction models with actionless large-scale out-of-domain video data and small-scale in-domain video data.
USE_BFLOAT16=true python -m scripts.train_libero_track_transformer --suite $SUITE_NAME
- Stage 2: Training trajectory-guided policy with small-scale in-domain robot data.
USE_BFLOAT16=false python -m scripts.train_libero_policy_atm --suite $SUITE_NAME --tt $PATH_TO_TT
USE_BFLOAT16=false python -m scripts.eval_libero_policy --suite $SUITE_NAME --exp-dir $PATH_TO_EXP
You can download our trained checkpoints.
Please cite the following paper if you feel this repository useful for your research.
@article{yang2024tra,
title={Tra-MoE: Learning Trajectory Prediction Model from Multiple Domains for Adaptive Policy Conditioning},
author={Yang, Jiange and Zhu, Haoyi and Wang, Yating and Wu, Gangshan and He, Tong and Wang, Limin},
journal={arXiv preprint arXiv:2411.14519},
year={2024}
}
Thanks to the open source of the following projects: