Skip to content
/ nnpdf Public

An open-source machine learning framework for global analyses of parton distributions.

License

Notifications You must be signed in to change notification settings

NNPDF/nnpdf

Repository files navigation

NNPDF test suite Docs Commondata

DOI

NNPDF: An open-source machine learning framework for global analyses of parton distributions

The NNPDF collaboration determines the structure of the proton using Machine Learning methods. This is the main repository of the fitting and analysis frameworks. In particular it contains all the necessary tools to reproduce the NNPDF4.0 PDF determinations.

Documentation

The documentation is available at https://docs.nnpdf.science/

Install

See the NNPDF installation guide for instructions on how to install and use the code, requirements and dependencies As a first step we recommend to follow one of the tutorials.

We follow a rolling development model where the tip of the master branch is expected to be stable, tested and correct. For more information see our releases and compatibility policy.

Cite

This code is described in the following paper:

@article{NNPDF:2021uiq,
    author = "Ball, Richard D. and others",
    collaboration = "NNPDF",
    title = "{An open-source machine learning framework for global analyses of parton distributions}",
    eprint = "2109.02671",
    archivePrefix = "arXiv",
    primaryClass = "hep-ph",
    reportNumber = "Edinburgh 2021/13, Nikhef-2021-020, TIF-UNIMI-2021-12",
    doi = "10.1140/epjc/s10052-021-09747-9",
    journal = "Eur. Phys. J. C",
    volume = "81",
    number = "10",
    pages = "958",
    year = "2021"
}

If you use the code to produce new results in a scientific publication, please follow the Citation Policy, particularly in regards to the papers relevant for QCD NNLO and EW NLO calculations incorporated in the NNPDF dataset.

Contribute

We welcome bug reports or feature requests sent to the issue tracker. You may use the issue tracker for help and questions as well.

If you would like contribute to the code, please follow the Contribution Guidelines.

When developing locally you can test your changes with pytest, running from the root of the repository:

  pytest --mpl --pyargs n3fit validphys