-
Notifications
You must be signed in to change notification settings - Fork 188
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' of github.com:NVIDIA/cccl into fea/use-sccache-bu…
…ild-cluster
- Loading branch information
Showing
61 changed files
with
807 additions
and
888 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
// SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. | ||
// SPDX-License-Identifier: BSD-3-Clause | ||
|
||
#include <cub/device/device_merge.cuh> | ||
|
||
#include <thrust/copy.h> | ||
#include <thrust/count.h> | ||
#include <thrust/detail/raw_pointer_cast.h> | ||
#include <thrust/iterator/tabulate_output_iterator.h> | ||
#include <thrust/sort.h> | ||
|
||
#include <cuda/std/utility> | ||
|
||
#include <cstdint> | ||
|
||
#include "merge_common.cuh" | ||
#include <nvbench_helper.cuh> | ||
|
||
// %RANGE% TUNE_TRANSPOSE trp 0:1:1 | ||
// %RANGE% TUNE_LOAD ld 0:2:1 | ||
// %RANGE% TUNE_ITEMS_PER_THREAD ipt 7:24:1 | ||
// %RANGE% TUNE_THREADS_PER_BLOCK_POW2 tpb 6:10:1 | ||
|
||
template <typename KeyT, typename OffsetT> | ||
void keys(nvbench::state& state, nvbench::type_list<KeyT, OffsetT>) | ||
{ | ||
using key_t = KeyT; | ||
using value_t = cub::NullType; | ||
using key_input_it_t = key_t*; | ||
using value_input_it_t = value_t*; | ||
using key_it_t = key_t*; | ||
using value_it_t = value_t*; | ||
using offset_t = OffsetT; | ||
using compare_op_t = less_t; | ||
|
||
#if !TUNE_BASE | ||
using policy_t = policy_hub_t<key_t>; | ||
using dispatch_t = cub::cub::detail::merge:: | ||
dispatch_t<key_it_t, value_it_t, key_it_t, value_it_t, key_it_t, value_it_t, offset_t, compare_op_t, policy_t>; | ||
#else // TUNE_BASE | ||
using dispatch_t = cub::detail::merge:: | ||
dispatch_t<key_it_t, value_it_t, key_it_t, value_it_t, key_it_t, value_it_t, offset_t, compare_op_t>; | ||
#endif // TUNE_BASE | ||
|
||
// Retrieve axis parameters | ||
const auto elements = static_cast<std::size_t>(state.get_int64("Elements{io}")); | ||
const bit_entropy entropy = str_to_entropy(state.get_string("Entropy")); | ||
|
||
// We generate data distributions in the range [0, 255], which, with lower entropy, get skewed towards 0. | ||
// We use this to generate increasingly large *consecutive* segments of data that are getting selected from the lhs | ||
thrust::device_vector<uint8_t> rnd_selector_val = generate(elements, entropy); | ||
uint8_t threshold = 128; | ||
select_if_less_than_t select_lhs_op{false, threshold}; | ||
select_if_less_than_t select_rhs_op{true, threshold}; | ||
|
||
// The following algorithm only works under the precondition that there's at least 50% of the data in the lhs | ||
// If that's not the case, we simply swap the logic for selecting into lhs and rhs | ||
const auto num_items_selected_into_lhs = | ||
static_cast<offset_t>(thrust::count_if(rnd_selector_val.begin(), rnd_selector_val.end(), select_lhs_op)); | ||
if (num_items_selected_into_lhs < elements / 2) | ||
{ | ||
using ::cuda::std::swap; | ||
swap(select_lhs_op, select_rhs_op); | ||
} | ||
|
||
// We want lhs and rhs to be of equal size. We also want to have skewed distributions, such that we put different | ||
// workloads on the binary search part. For this reason, we identify the index from the input, referred to as pivot | ||
// point, after which the lhs is "full". We compose the rhs by selecting all items up to the pivot point that were not | ||
// selected for lhs and *all* items after the pivot point. | ||
constexpr std::size_t num_pivot_points = 1; | ||
thrust::device_vector<offset_t> pivot_point(num_pivot_points); | ||
const auto num_items_lhs = elements / 2; | ||
const auto num_items_rhs = elements - num_items_lhs; | ||
auto counting_it = thrust::make_counting_iterator(offset_t{0}); | ||
thrust::copy_if( | ||
counting_it, | ||
counting_it + elements, | ||
rnd_selector_val.begin(), | ||
thrust::make_tabulate_output_iterator(write_pivot_point_t<offset_t>{ | ||
static_cast<offset_t>(num_items_lhs), thrust::raw_pointer_cast(pivot_point.data())}), | ||
select_lhs_op); | ||
|
||
thrust::device_vector<key_t> keys_lhs(num_items_lhs); | ||
thrust::device_vector<key_t> keys_rhs(num_items_rhs); | ||
thrust::device_vector<key_t> keys_out(elements); | ||
|
||
// Generate increasing input range to sample from | ||
thrust::device_vector<key_t> increasing_input = generate(elements); | ||
thrust::sort(increasing_input.begin(), increasing_input.end()); | ||
|
||
// Select lhs from input up to pivot point | ||
offset_t pivot_point_val = pivot_point[0]; | ||
auto const end_lhs = thrust::copy_if( | ||
increasing_input.cbegin(), | ||
increasing_input.cbegin() + pivot_point_val, | ||
rnd_selector_val.cbegin(), | ||
keys_lhs.begin(), | ||
select_lhs_op); | ||
|
||
// Select rhs items from input up to pivot point | ||
auto const end_rhs = thrust::copy_if( | ||
increasing_input.cbegin(), | ||
increasing_input.cbegin() + pivot_point_val, | ||
rnd_selector_val.cbegin(), | ||
keys_rhs.begin(), | ||
select_rhs_op); | ||
// From pivot point copy all remaining items to rhs | ||
thrust::copy(increasing_input.cbegin() + pivot_point_val, increasing_input.cbegin() + elements, end_rhs); | ||
|
||
key_t* d_keys_lhs = thrust::raw_pointer_cast(keys_lhs.data()); | ||
key_t* d_keys_rhs = thrust::raw_pointer_cast(keys_rhs.data()); | ||
key_t* d_keys_out = thrust::raw_pointer_cast(keys_out.data()); | ||
|
||
// Enable throughput calculations and add "Size" column to results. | ||
state.add_element_count(elements); | ||
state.add_global_memory_reads<KeyT>(elements); | ||
state.add_global_memory_writes<KeyT>(elements); | ||
|
||
// Allocate temporary storage: | ||
std::size_t temp_size{}; | ||
dispatch_t::dispatch( | ||
nullptr, | ||
temp_size, | ||
d_keys_lhs, | ||
nullptr, | ||
num_items_lhs, | ||
d_keys_rhs, | ||
nullptr, | ||
num_items_rhs, | ||
d_keys_out, | ||
nullptr, | ||
compare_op_t{}, | ||
cudaStream_t{}); | ||
|
||
thrust::device_vector<nvbench::uint8_t> temp(temp_size); | ||
auto* temp_storage = thrust::raw_pointer_cast(temp.data()); | ||
|
||
state.exec(nvbench::exec_tag::no_batch, [&](nvbench::launch& launch) { | ||
dispatch_t::dispatch( | ||
temp_storage, | ||
temp_size, | ||
d_keys_lhs, | ||
nullptr, | ||
num_items_lhs, | ||
d_keys_rhs, | ||
nullptr, | ||
num_items_rhs, | ||
d_keys_out, | ||
nullptr, | ||
compare_op_t{}, | ||
launch.get_stream()); | ||
}); | ||
} | ||
|
||
#ifdef TUNE_KeyT | ||
using key_types = nvbench::type_list<TUNE_KeyT>; | ||
#else // !defined(TUNE_KeyT) | ||
using key_types = fundamental_types; | ||
#endif // TUNE_KeyT | ||
|
||
NVBENCH_BENCH_TYPES(keys, NVBENCH_TYPE_AXES(key_types, offset_types)) | ||
.set_name("base") | ||
.set_type_axes_names({"KeyT{ct}", "OffsetT{ct}"}) | ||
.add_int64_power_of_two_axis("Elements{io}", nvbench::range(16, 28, 4)) | ||
.add_string_axis("Entropy", {"1.000", "0.201"}); |
Oops, something went wrong.