-
Notifications
You must be signed in to change notification settings - Fork 195
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Adds benchmarks for cub::DeviceMerge
#3529
Merged
Merged
Changes from all commits
Commits
Show all changes
8 commits
Select commit
Hold shift + click to select a range
02a84c8
adds benchmarks for merge pairs
elstehle 6bb30c6
adds benchmarks for merge keys
elstehle ceda186
addresses review comments
elstehle 7efe791
drop sm 30 from policy
elstehle faa84ad
Merge remote-tracking branch 'upstream/main' into enh/cub-merge-bench…
elstehle 13185a0
Merge branch 'main' into enh/cub-merge-benchmarks
elstehle 5c6b496
Merge remote-tracking branch 'upstream/main' into enh/cub-merge-bench…
elstehle eeb72c4
Merge remote-tracking branch 'upstream/main' into enh/cub-merge-bench…
elstehle File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
// SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. | ||
// SPDX-License-Identifier: BSD-3-Clause | ||
|
||
#include <cub/device/device_merge.cuh> | ||
|
||
#include <thrust/copy.h> | ||
#include <thrust/count.h> | ||
#include <thrust/detail/raw_pointer_cast.h> | ||
#include <thrust/iterator/tabulate_output_iterator.h> | ||
#include <thrust/sort.h> | ||
|
||
#include <cuda/std/utility> | ||
|
||
#include <cstdint> | ||
|
||
#include "merge_common.cuh" | ||
#include <nvbench_helper.cuh> | ||
|
||
// %RANGE% TUNE_TRANSPOSE trp 0:1:1 | ||
// %RANGE% TUNE_LOAD ld 0:2:1 | ||
// %RANGE% TUNE_ITEMS_PER_THREAD ipt 7:24:1 | ||
// %RANGE% TUNE_THREADS_PER_BLOCK_POW2 tpb 6:10:1 | ||
|
||
template <typename KeyT, typename OffsetT> | ||
void keys(nvbench::state& state, nvbench::type_list<KeyT, OffsetT>) | ||
{ | ||
using key_t = KeyT; | ||
using value_t = cub::NullType; | ||
using key_input_it_t = key_t*; | ||
using value_input_it_t = value_t*; | ||
using key_it_t = key_t*; | ||
using value_it_t = value_t*; | ||
using offset_t = OffsetT; | ||
using compare_op_t = less_t; | ||
|
||
#if !TUNE_BASE | ||
using policy_t = policy_hub_t<key_t>; | ||
using dispatch_t = cub::cub::detail::merge:: | ||
dispatch_t<key_it_t, value_it_t, key_it_t, value_it_t, key_it_t, value_it_t, offset_t, compare_op_t, policy_t>; | ||
#else // TUNE_BASE | ||
using dispatch_t = cub::detail::merge:: | ||
dispatch_t<key_it_t, value_it_t, key_it_t, value_it_t, key_it_t, value_it_t, offset_t, compare_op_t>; | ||
#endif // TUNE_BASE | ||
|
||
// Retrieve axis parameters | ||
const auto elements = static_cast<std::size_t>(state.get_int64("Elements{io}")); | ||
const bit_entropy entropy = str_to_entropy(state.get_string("Entropy")); | ||
|
||
// We generate data distributions in the range [0, 255], which, with lower entropy, get skewed towards 0. | ||
// We use this to generate increasingly large *consecutive* segments of data that are getting selected from the lhs | ||
thrust::device_vector<uint8_t> rnd_selector_val = generate(elements, entropy); | ||
uint8_t threshold = 128; | ||
select_if_less_than_t select_lhs_op{false, threshold}; | ||
select_if_less_than_t select_rhs_op{true, threshold}; | ||
|
||
// The following algorithm only works under the precondition that there's at least 50% of the data in the lhs | ||
// If that's not the case, we simply swap the logic for selecting into lhs and rhs | ||
const auto num_items_selected_into_lhs = | ||
static_cast<offset_t>(thrust::count_if(rnd_selector_val.begin(), rnd_selector_val.end(), select_lhs_op)); | ||
if (num_items_selected_into_lhs < elements / 2) | ||
{ | ||
using ::cuda::std::swap; | ||
swap(select_lhs_op, select_rhs_op); | ||
} | ||
|
||
// We want lhs and rhs to be of equal size. We also want to have skewed distributions, such that we put different | ||
// workloads on the binary search part. For this reason, we identify the index from the input, referred to as pivot | ||
// point, after which the lhs is "full". We compose the rhs by selecting all items up to the pivot point that were not | ||
// selected for lhs and *all* items after the pivot point. | ||
constexpr std::size_t num_pivot_points = 1; | ||
thrust::device_vector<offset_t> pivot_point(num_pivot_points); | ||
const auto num_items_lhs = elements / 2; | ||
const auto num_items_rhs = elements - num_items_lhs; | ||
auto counting_it = thrust::make_counting_iterator(offset_t{0}); | ||
thrust::copy_if( | ||
counting_it, | ||
counting_it + elements, | ||
rnd_selector_val.begin(), | ||
thrust::make_tabulate_output_iterator(write_pivot_point_t<offset_t>{ | ||
static_cast<offset_t>(num_items_lhs), thrust::raw_pointer_cast(pivot_point.data())}), | ||
select_lhs_op); | ||
|
||
thrust::device_vector<key_t> keys_lhs(num_items_lhs); | ||
thrust::device_vector<key_t> keys_rhs(num_items_rhs); | ||
thrust::device_vector<key_t> keys_out(elements); | ||
|
||
// Generate increasing input range to sample from | ||
thrust::device_vector<key_t> increasing_input = generate(elements); | ||
thrust::sort(increasing_input.begin(), increasing_input.end()); | ||
|
||
// Select lhs from input up to pivot point | ||
offset_t pivot_point_val = pivot_point[0]; | ||
auto const end_lhs = thrust::copy_if( | ||
increasing_input.cbegin(), | ||
increasing_input.cbegin() + pivot_point_val, | ||
rnd_selector_val.cbegin(), | ||
keys_lhs.begin(), | ||
select_lhs_op); | ||
|
||
// Select rhs items from input up to pivot point | ||
auto const end_rhs = thrust::copy_if( | ||
increasing_input.cbegin(), | ||
increasing_input.cbegin() + pivot_point_val, | ||
rnd_selector_val.cbegin(), | ||
keys_rhs.begin(), | ||
select_rhs_op); | ||
// From pivot point copy all remaining items to rhs | ||
thrust::copy(increasing_input.cbegin() + pivot_point_val, increasing_input.cbegin() + elements, end_rhs); | ||
|
||
key_t* d_keys_lhs = thrust::raw_pointer_cast(keys_lhs.data()); | ||
key_t* d_keys_rhs = thrust::raw_pointer_cast(keys_rhs.data()); | ||
key_t* d_keys_out = thrust::raw_pointer_cast(keys_out.data()); | ||
|
||
// Enable throughput calculations and add "Size" column to results. | ||
state.add_element_count(elements); | ||
state.add_global_memory_reads<KeyT>(elements); | ||
state.add_global_memory_writes<KeyT>(elements); | ||
|
||
// Allocate temporary storage: | ||
std::size_t temp_size{}; | ||
dispatch_t::dispatch( | ||
nullptr, | ||
temp_size, | ||
d_keys_lhs, | ||
nullptr, | ||
num_items_lhs, | ||
d_keys_rhs, | ||
nullptr, | ||
num_items_rhs, | ||
d_keys_out, | ||
nullptr, | ||
compare_op_t{}, | ||
cudaStream_t{}); | ||
|
||
thrust::device_vector<nvbench::uint8_t> temp(temp_size); | ||
auto* temp_storage = thrust::raw_pointer_cast(temp.data()); | ||
|
||
state.exec(nvbench::exec_tag::no_batch, [&](nvbench::launch& launch) { | ||
dispatch_t::dispatch( | ||
temp_storage, | ||
temp_size, | ||
d_keys_lhs, | ||
nullptr, | ||
num_items_lhs, | ||
d_keys_rhs, | ||
nullptr, | ||
num_items_rhs, | ||
d_keys_out, | ||
nullptr, | ||
compare_op_t{}, | ||
launch.get_stream()); | ||
}); | ||
} | ||
|
||
#ifdef TUNE_KeyT | ||
using key_types = nvbench::type_list<TUNE_KeyT>; | ||
#else // !defined(TUNE_KeyT) | ||
using key_types = fundamental_types; | ||
#endif // TUNE_KeyT | ||
|
||
NVBENCH_BENCH_TYPES(keys, NVBENCH_TYPE_AXES(key_types, offset_types)) | ||
.set_name("base") | ||
.set_type_axes_names({"KeyT{ct}", "OffsetT{ct}"}) | ||
.add_int64_power_of_two_axis("Elements{io}", nvbench::range(16, 28, 4)) | ||
.add_string_axis("Entropy", {"1.000", "0.201"}); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
// SPDX-FileCopyrightText: Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
// SPDX-License-Identifier: BSD-3-Clause | ||
|
||
#if !TUNE_BASE | ||
# define TUNE_THREADS_PER_BLOCK (1 << TUNE_THREADS_PER_BLOCK_POW2) | ||
# if TUNE_TRANSPOSE == 0 | ||
# define TUNE_LOAD_ALGORITHM cub::BLOCK_LOAD_DIRECT | ||
# define TUNE_STORE_ALGORITHM cub::BLOCK_STORE_DIRECT | ||
# else // TUNE_TRANSPOSE == 1 | ||
# define TUNE_LOAD_ALGORITHM cub::BLOCK_LOAD_WARP_TRANSPOSE | ||
# define TUNE_STORE_ALGORITHM cub::BLOCK_STORE_WARP_TRANSPOSE | ||
# endif // TUNE_TRANSPOSE | ||
|
||
# if TUNE_LOAD == 0 | ||
# define TUNE_LOAD_MODIFIER cub::LOAD_DEFAULT | ||
# elif TUNE_LOAD == 1 | ||
# define TUNE_LOAD_MODIFIER cub::LOAD_LDG | ||
# else // TUNE_LOAD == 2 | ||
# define TUNE_LOAD_MODIFIER cub::LOAD_CA | ||
# endif // TUNE_LOAD | ||
|
||
template <typename KeyT> | ||
struct policy_hub_t | ||
{ | ||
struct policy_t : cub::ChainedPolicy<500, policy_t, policy_t> | ||
{ | ||
using merge_policy = | ||
cub::agent_policy_t<TUNE_THREADS_PER_BLOCK, | ||
cub::Nominal4BItemsToItems<KeyT>(TUNE_ITEMS_PER_THREAD), | ||
TUNE_LOAD_ALGORITHM, | ||
TUNE_LOAD_MODIFIER, | ||
TUNE_STORE_ALGORITHM>; | ||
}; | ||
|
||
using MaxPolicy = policy_t; | ||
}; | ||
#endif // TUNE_BASE | ||
|
||
struct select_if_less_than_t | ||
{ | ||
bool negate; | ||
uint8_t threshold; | ||
|
||
__device__ __forceinline__ bool operator()(uint8_t val) const | ||
{ | ||
return negate ? !(val < threshold) : val < threshold; | ||
} | ||
}; | ||
|
||
template <typename OffsetT> | ||
struct write_pivot_point_t | ||
{ | ||
OffsetT threshold; | ||
OffsetT* pivot_point; | ||
|
||
__device__ void operator()(OffsetT output_index, OffsetT input_index) const | ||
{ | ||
if (output_index == threshold) | ||
{ | ||
*pivot_point = input_index; | ||
} | ||
} | ||
}; |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
remark: this is beautiful 💚