Skip to content

Avatars for Zoom, Skype and other video-conferencing apps.

License

Notifications You must be signed in to change notification settings

Nene020/avatarify-python

 
 

Repository files navigation

Avatarify Python

Photorealistic avatars for video-conferencing.

Avatarify Python requires manually downloading and installing some dependencies, and is therefore best suited for users who have some experience with command line applications. Avatarify Desktop, which aims to be easier to install and use, is recommended for most users. If you still want to use Avatarify Python, proceed to the install instructions.

Based on First Order Motion Model.

News

  • 7 Mar 2021. Renamed project to Avatarify Python to distinguish it from other versions of Avatarify
  • 14 December 2020. Released Avatarify Desktop. Check it out here.
  • 11 July 2020. Added Docker support. Now you can run Avatarify from Docker on Linux. Thanks to mikaelhg and mintmaker for contribution!
  • 22 May 2020. Added Google Colab mode. Now you can run Avatarify on any computer without GPU!
  • 7 May 2020. Added remote GPU support for all platforms (based on mynameisfiber's solution). Demo. Deployment instructions.
  • 24 April 2020. Added Windows installation tutorial.
  • 17 April 2020. Created Slack community. Please join via invitation link.
  • 15 April 2020. Added StyleGAN-generated avatars. Just press Q and now you drive a person that never existed. Every time you push the button – new avatar is sampled.
  • 13 April 2020. Added Windows support (kudos to 9of9).

Avatarify apps

We have deployed Avatarify on iOS and Android devices using our proprietary inference engine. The iOS version features the Life mode for recording animations in real time. However, the Life mode is not available on Android devices due to the diversity of the devices we have to support.

drawing drawing

About

Avatars for Zoom, Skype and other video-conferencing apps.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 47.6%
  • Jupyter Notebook 41.7%
  • Shell 7.8%
  • Dockerfile 1.8%
  • Batchfile 1.1%