Multi-direction and Multi-scale Pyramid in Transformer for Video-based Pedestrian Retrieval on PolarbearVidID
Implementation of the proposed PiT used on the PolarBearVidID Dataset. Please refer to [PolarBearVidID @ MDPI] and [PiT @ Arxiv].
Here is a brief instruction for installing the experimental environment.
# Windows 10 and 11 (use cmd)
# install conda (add to path)
$ conda create -n PiT python=3.6 -y
$ conda activate PiT (Win 11: activate PiT)
# install pytorch 1.8.1/1.6.0 (other versions may also work)
$ pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
$ pip install timm scipy einops yacs opencv-python==4.3.0.36 tensorboard pandas
The pre-trained vit model can be downloaded in this link and should be put in the checkpoints/
directory.
Download PolarBearVidID Dataset at PolarBearVidID and store it in the data/PolarBearVidID
Directory.
# This command below includes the training and testing processes.
$ python train.py --config_file configs/PolarBearVidID/pit.yml MODEL.DEVICE_ID "('0')"
$ tensorboard --logdir_spec fold1:logs\PolarBearVidID_PiT\1,fold2:logs\PolarBearVidID_PiT\2,fold3:logs\PolarBearVidID_PiT\3,fold4:logs\PolarBearVidID_PiT\4,fold5:logs\PolarBearVidID_PiT\5
$ python vis.py --config_file configs/PolarBearVidID/pit.yml MODEL.DEVICE_ID "('0')"
With a rank-1 performance of 95.88 ± 1.45 % and a mAP score of 81.62 ± 7.23 %, the adapted PiT_14p trained for 400 epochs outperformed the image-based baseline approach while almost reaching the performance of GLTR.
This repository is built upon the repository PiT and TranReID.
If you find this project useful for your research, please kindly cite:
@article{zuerl_polarbearvidid_2023,
title = {{PolarBearVidID}: {A} {Video}-{Based} {Re}-{Identification} {Benchmark} {Dataset} for {Polar} {Bears}},
volume = {13},
issn = {2076-2615},
shorttitle = {{PolarBearVidID}},
url = {https://www.mdpi.com/2076-2615/13/5/801},
doi = {10.3390/ani13050801},
language = {en},
number = {5},
urldate = {2023-02-27},
journal = {Animals},
author = {Zuerl, Matthias and Dirauf, Richard and Koeferl, Franz and Steinlein, Nils and Sueskind, Jonas and Zanca, Dario and Brehm, Ingrid and Fersen, Lorenzo von and Eskofier, Bjoern},
month = feb,
year = {2023},
pages = {801}
}
And the original authors of PiT
@ARTICLE{9714137,
author={Zang, Xianghao and Li, Ge and Gao, Wei},
journal={IEEE Transactions on Industrial Informatics},
title={Multidirection and Multiscale Pyramid in Transformer for Video-Based Pedestrian Retrieval},
year={2022},
volume={18},
number={12},
pages={8776-8785},
doi={10.1109/TII.2022.3151766}
}
This repository is released under the GPL-2.0 License as found in the LICENSE file.