A composable prompt-engineering toolkit:
- prompts/ – production-ready templates
- roles/ – system instruction fragments
- contexts/ – reusable background or few-shot examples
- templates/ – granular snippet templates
- accelerators/ – orchestration functions (chain, parallel, retry)
- evaluators/ – output validation utilities
- pipelines/ – end-to-end workflow constructs
- connectors/ – LLM provider adapters
- schemas/ – Pydantic models for structured outputs
- config/ – default settings and presets
- utils/ – helper functions
pip install llm_prompt_builders
from llm_prompt_builders.roles.generic import get_scientific_editor
from llm_prompt_builders.contexts.research import get_research_context
from llm_prompt_builders.templates.question_template import create_question_prompt
from llm_prompt_builders.accelerators.chain import chain
role = get_scientific_editor()
context = get_research_context()
template = create_question_prompt("What are the study limitations?")
prompt = chain([role, context, template])
print(prompt)