-
Notifications
You must be signed in to change notification settings - Fork 475
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
* [RKNPU2]support rknpu2 ClasModel #957 * [RKNPU2]support rknpu2 ClasModel #957 * [RKNPU2]support rknpu2 add Resnet50_vd example #957 * [RKNPU2]support rknpu2 add Resnet50_vd example #957 * [RKNPU2]support rknpu2, improve doc #957 * [RKNPU2]support rknpu2, improve doc #957 * [RKNPU2]support rknpu2, improve doc #957 * [RKNPU2]support rknpu2, improve doc #957 * [RKNPU2]support rknpu2, improve doc #957 * [RKNPU2]support rknpu2, improve doc #957 * [RKNPU2]support rknpu2, improve doc #957
- Loading branch information
1 parent
02425bf
commit 973c746
Showing
13 changed files
with
390 additions
and
17 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
57 changes: 57 additions & 0 deletions
57
examples/vision/classification/paddleclas/rknpu2/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
# PaddleClas 模型RKNPU2部署 | ||
|
||
## 转换模型 | ||
下面以 ResNet50_vd为例子,教大家如何转换分类模型到RKNN模型。 | ||
|
||
```bash | ||
# 安装 paddle2onnx | ||
pip install paddle2onnx | ||
|
||
# 下载ResNet50_vd模型文件和测试图片 | ||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz | ||
tar -xvf ResNet50_vd_infer.tgz | ||
|
||
# 静态图转ONNX模型,注意,这里的save_file请和压缩包名对齐 | ||
paddle2onnx --model_dir ResNet50_vd_infer \ | ||
--model_filename inference.pdmodel \ | ||
--params_filename inference.pdiparams \ | ||
--save_file ResNet50_vd_infer/ResNet50_vd_infer.onnx \ | ||
--enable_dev_version True \ | ||
--opset_version 12 \ | ||
--enable_onnx_checker True | ||
|
||
# 固定shape,注意这里的inputs得对应netron.app展示的 inputs 的 name,有可能是image 或者 x | ||
python -m paddle2onnx.optimize --input_model ResNet50_vd_infer/ResNet50_vd_infer.onnx \ | ||
--output_model ResNet50_vd_infer/ResNet50_vd_infer.onnx \ | ||
--input_shape_dict "{'inputs':[1,3,224,224]}" | ||
``` | ||
|
||
### 编写模型导出配置文件 | ||
以转化RK3588的RKNN模型为例子,我们需要编辑tools/rknpu2/config/ResNet50_vd_infer_rknn.yaml,来转换ONNX模型到RKNN模型。 | ||
|
||
默认的 mean=0, std=1是在内存做normalize,如果你需要在NPU上执行normalize操作,请根据你的模型配置normalize参数,例如: | ||
```yaml | ||
model_path: ./ResNet50_vd_infer.onnx | ||
output_folder: ./ | ||
target_platform: RK3588 | ||
normalize: | ||
mean: [[0.485,0.456,0.406]] | ||
std: [[0.229,0.224,0.225]] | ||
outputs: [] | ||
outputs_nodes: [] | ||
do_quantization: False | ||
dataset: | ||
``` | ||
# ONNX模型转RKNN模型 | ||
```shell | ||
python tools/rknpu2/export.py \ | ||
--config_path tools/rknpu2/config/ResNet50_vd_infer_rknn.yaml \ | ||
--target_platform rk3588 | ||
``` | ||
|
||
## 其他链接 | ||
- [Cpp部署](./cpp) | ||
- [Python部署](./python) | ||
- [视觉模型预测结果](../../../../../docs/api/vision_results/) |
37 changes: 37 additions & 0 deletions
37
examples/vision/classification/paddleclas/rknpu2/cpp/CMakeLists.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
CMAKE_MINIMUM_REQUIRED(VERSION 3.10) | ||
project(rknpu_test) | ||
|
||
set(CMAKE_CXX_STANDARD 14) | ||
|
||
# 指定下载解压后的fastdeploy库路径 | ||
set(FASTDEPLOY_INSTALL_DIR "thirdpartys/fastdeploy-0.0.3") | ||
|
||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeployConfig.cmake) | ||
include_directories(${FastDeploy_INCLUDE_DIRS}) | ||
add_executable(rknpu_test infer.cc) | ||
target_link_libraries(rknpu_test | ||
${FastDeploy_LIBS} | ||
) | ||
|
||
|
||
set(CMAKE_INSTALL_PREFIX ${CMAKE_SOURCE_DIR}/build/install) | ||
|
||
install(TARGETS rknpu_test DESTINATION ./) | ||
|
||
install(DIRECTORY ppclas_model_dir DESTINATION ./) | ||
install(DIRECTORY images DESTINATION ./) | ||
|
||
file(GLOB FASTDEPLOY_LIBS ${FASTDEPLOY_INSTALL_DIR}/lib/*) | ||
message("${FASTDEPLOY_LIBS}") | ||
install(PROGRAMS ${FASTDEPLOY_LIBS} DESTINATION lib) | ||
|
||
file(GLOB ONNXRUNTIME_LIBS ${FASTDEPLOY_INSTALL_DIR}/third_libs/install/onnxruntime/lib/*) | ||
install(PROGRAMS ${ONNXRUNTIME_LIBS} DESTINATION lib) | ||
|
||
install(DIRECTORY ${FASTDEPLOY_INSTALL_DIR}/third_libs/install/opencv/lib DESTINATION ./) | ||
|
||
file(GLOB PADDLETOONNX_LIBS ${FASTDEPLOY_INSTALL_DIR}/third_libs/install/paddle2onnx/lib/*) | ||
install(PROGRAMS ${PADDLETOONNX_LIBS} DESTINATION lib) | ||
|
||
file(GLOB RKNPU2_LIBS ${FASTDEPLOY_INSTALL_DIR}/third_libs/install/rknpu2_runtime/RK3588/lib/*) | ||
install(PROGRAMS ${RKNPU2_LIBS} DESTINATION lib) |
78 changes: 78 additions & 0 deletions
78
examples/vision/classification/paddleclas/rknpu2/cpp/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
# PaddleClas C++部署示例 | ||
|
||
本目录下用于展示 ResNet50_vd 模型在RKNPU2上的部署,以下的部署过程以 ResNet50_vd 为例子。 | ||
|
||
在部署前,需确认以下两个步骤: | ||
|
||
1. 软硬件环境满足要求 | ||
2. 根据开发环境,下载预编译部署库或者从头编译FastDeploy仓库 | ||
|
||
以上步骤请参考[RK2代NPU部署库编译](../../../../../../docs/cn/build_and_install/rknpu2.md)实现 | ||
|
||
## 生成基本目录文件 | ||
|
||
该例程由以下几个部分组成 | ||
```text | ||
. | ||
├── CMakeLists.txt | ||
├── build # 编译文件夹 | ||
├── images # 存放图片的文件夹 | ||
├── infer.cc | ||
├── ppclas_model_dir # 存放模型文件的文件夹 | ||
└── thirdpartys # 存放sdk的文件夹 | ||
``` | ||
|
||
首先需要先生成目录结构 | ||
```bash | ||
mkdir build | ||
mkdir images | ||
mkdir ppclas_model_dir | ||
mkdir thirdpartys | ||
``` | ||
|
||
## 编译 | ||
|
||
### 编译并拷贝SDK到thirdpartys文件夹 | ||
|
||
请参考[RK2代NPU部署库编译](../../../../../../docs/cn/build_and_install/rknpu2.md)仓库编译SDK,编译完成后,将在build目录下生成 | ||
fastdeploy-0.0.3目录,请移动它至thirdpartys目录下. | ||
|
||
### 拷贝模型文件,以及配置文件至model文件夹 | ||
在Paddle动态图模型 -> Paddle静态图模型 -> ONNX模型的过程中,将生成ONNX文件以及对应的yaml配置文件,请将配置文件存放到model文件夹内。 | ||
转换为RKNN后的模型文件也需要拷贝至model,转换方案: ([ResNet50_vd RKNN模型](../README.md))。 | ||
|
||
### 准备测试图片至image文件夹 | ||
```bash | ||
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg | ||
``` | ||
|
||
### 编译example | ||
|
||
```bash | ||
cd build | ||
cmake .. | ||
make -j8 | ||
make install | ||
``` | ||
|
||
## 运行例程 | ||
|
||
```bash | ||
cd ./build/install | ||
./rknpu_test ./ppclas_model_dir ./images/ILSVRC2012_val_00000010.jpeg | ||
``` | ||
|
||
## 运行结果展示 | ||
ClassifyResult( | ||
label_ids: 153, | ||
scores: 0.684570, | ||
) | ||
|
||
## 注意事项 | ||
RKNPU上对模型的输入要求是使用NHWC格式,且图片归一化操作会在转RKNN模型时,内嵌到模型中,因此我们在使用FastDeploy部署时, | ||
DisablePermute(C++)或`disable_permute(Python),在预处理阶段禁用数据格式的转换。 | ||
|
||
## 其它文档 | ||
- [ResNet50_vd Python 部署](../python) | ||
- [模型预测结果说明](../../../../../../docs/api/vision_results/) | ||
- [转换ResNet50_vd RKNN模型文档](../README.md) |
58 changes: 58 additions & 0 deletions
58
examples/vision/classification/paddleclas/rknpu2/cpp/infer.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "fastdeploy/vision.h" | ||
|
||
void RKNPU2Infer(const std::string& model_dir, const std::string& image_file) { | ||
auto model_file = model_dir + "/ResNet50_vd_infer_rk3588.rknn"; | ||
auto params_file = ""; | ||
auto config_file = model_dir + "/inference_cls.yaml"; | ||
|
||
auto option = fastdeploy::RuntimeOption(); | ||
option.UseRKNPU2(); | ||
|
||
auto format = fastdeploy::ModelFormat::RKNN; | ||
|
||
auto model = fastdeploy::vision::classification::PaddleClasModel( | ||
model_file, params_file, config_file,option,format); | ||
if (!model.Initialized()) { | ||
std::cerr << "Failed to initialize." << std::endl; | ||
return; | ||
} | ||
model.GetPreprocessor().DisablePermute(); | ||
fastdeploy::TimeCounter tc; | ||
tc.Start(); | ||
auto im = cv::imread(image_file); | ||
fastdeploy::vision::ClassifyResult res; | ||
if (!model.Predict(im, &res)) { | ||
std::cerr << "Failed to predict." << std::endl; | ||
return; | ||
} | ||
// print res | ||
std::cout << res.Str() << std::endl; | ||
tc.End(); | ||
tc.PrintInfo("PPClas in RKNPU2"); | ||
} | ||
|
||
int main(int argc, char* argv[]) { | ||
if (argc < 3) { | ||
std::cout | ||
<< "Usage: rknpu_test path/to/model_dir path/to/image run_option, " | ||
"e.g ./rknpu_test ./ppclas_model_dir ./images/ILSVRC2012_val_00000010.jpeg" | ||
<< std::endl; | ||
return -1; | ||
} | ||
RKNPU2Infer(argv[1], argv[2]); | ||
return 0; | ||
} |
35 changes: 35 additions & 0 deletions
35
examples/vision/classification/paddleclas/rknpu2/python/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
# PaddleClas Python部署示例 | ||
|
||
在部署前,需确认以下两个步骤 | ||
|
||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/rknpu2.md) | ||
|
||
本目录下提供`infer.py`快速完成 ResNet50_vd 在RKNPU上部署的示例。执行如下脚本即可完成 | ||
|
||
```bash | ||
# 下载部署示例代码 | ||
git clone https://github.com/PaddlePaddle/FastDeploy.git | ||
cd FastDeploy/examples/vision/classification/paddleclas/rknpu2/python | ||
|
||
# 下载图片 | ||
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg | ||
|
||
# 推理 | ||
python3 infer.py --model_file ./ResNet50_vd_infer/ResNet50_vd_infer_rk3588.rknn --config_file ResNet50_vd_infer/inference_cls.yaml --image ILSVRC2012_val_00000010.jpeg | ||
|
||
# 运行完成后返回结果如下所示 | ||
ClassifyResult( | ||
label_ids: 153, | ||
scores: 0.684570, | ||
) | ||
``` | ||
|
||
|
||
## 注意事项 | ||
RKNPU上对模型的输入要求是使用NHWC格式,且图片归一化操作会在转RKNN模型时,内嵌到模型中,因此我们在使用FastDeploy部署时, | ||
DisablePermute(C++)或`disable_permute(Python),在预处理阶段禁用数据格式的转换。 | ||
|
||
## 其它文档 | ||
- [ResNet50_vd C++部署](../cpp) | ||
- [模型预测结果说明](../../../../../../docs/api/vision_results/) | ||
- [转换ResNet50_vd RKNN模型文档](../README.md) |
50 changes: 50 additions & 0 deletions
50
examples/vision/classification/paddleclas/rknpu2/python/infer.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import fastdeploy as fd | ||
import cv2 | ||
import os | ||
|
||
|
||
def parse_arguments(): | ||
import argparse | ||
import ast | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--model_file", required=True, help="Path of rknn model.") | ||
parser.add_argument("--config_file", required=True, help="Path of config.") | ||
parser.add_argument( | ||
"--image", type=str, required=True, help="Path of test image file.") | ||
return parser.parse_args() | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_arguments() | ||
|
||
model_file = args.model_file | ||
params_file = "" | ||
config_file = args.config_file | ||
# 配置runtime,加载模型 | ||
runtime_option = fd.RuntimeOption() | ||
runtime_option.use_rknpu2() | ||
model = fd.vision.classification.ResNet50vd( | ||
model_file, | ||
params_file, | ||
config_file, | ||
runtime_option=runtime_option, | ||
model_format=fd.ModelFormat.RKNN) | ||
# 禁用通道转换 | ||
model.preprocessor.disable_permute() | ||
im = cv2.imread(args.image) | ||
result = model.predict(im, topk=1) | ||
print(result) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.