Skip to content

Commit

Permalink
weekly updates
Browse files Browse the repository at this point in the history
Celebrating 1000 stars!

Co-Authored-By: Zhuoqi Zheng <[email protected]>
Co-Authored-By: Jianqi Zhang <[email protected]>
  • Loading branch information
3 people committed Mar 15, 2024
1 parent 6269e77 commit b3994c2
Show file tree
Hide file tree
Showing 2 changed files with 36 additions and 21 deletions.
2 changes: 1 addition & 1 deletion CODE_OF_CONDUCT.md
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ representative at an online or offline event.

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
seanpeldomzhang@qq.com.
seanpeldomzhang@gmail.com.
All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the
Expand Down
55 changes: 35 additions & 20 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,26 +3,21 @@
> This repository is inspired by the remarkable work of [Kevin Kaichuang Yang](https://github.com/yangkky) and their outstanding project [Machine-learning-for-proteins](https://github.com/yangkky/Machine-learning-for-proteins). We have established this repository to provide a specialized and focused platform for the field of **Deep Learning for Protein Design**, a rapidly advancing domain in computational biology.
>
> [Contributions](https://github.com/Peldom/papers_for_protein_design_using_DL/blob/main/CONTRIBUTING.md) and [suggestions](https://github.com/Peldom/papers_for_protein_design_using_DL/issues) are warmly welcome!
> Community Values, Guiding Principles, and Commitments for the Responsible Development of AI for Protein Design: [details](https://responsiblebiodesign.ai/)
<!-- >
>1. Mini protein, binders, metalloprotein, antibody, peptide & molecule designs are included.
>2. More de novo protein design paper list at [Wangchentong](https://github.com/Wangchentong)'s GitHub repo: [paper_for_denovo_protein_design](https://github.com/Wangchentong/paper_for_denovo_protein_design).
>3. Our notes of these papers are shared in a **[Zhihu Column](https://www.zhihu.com/column/c_1475864742820929537)** (simplified Chinese/English), more suggested notes at [RosettAI](https://www.zhihu.com/column/rosettastudy). -->
*Papers last week, updated on 2024.03.08:*
+ An integrative approach to protein sequence design through multiobjective optimization
+ [[bioRxiv 2024.03.01.582670](https://www.biorxiv.org/content/10.1101/2024.03.01.582670v1)][[code](https://github.com/luhong88/int_seq_des)][[Supplymentary](https://www.biorxiv.org/content/biorxiv/early/2024/03/04/2024.03.01.582670/DC1/embed/media-1.pdf)]
+ Protein Design Using Structure-Prediction Networks: AlphaFold and RoseTTAFold as Protein Structure Foundation Models
+ [[Cold Spring Harbor Perspectives in Biology(2024)](https://cshperspectives.cshlp.org/content/early/2024/03/01/cshperspect.a041472.short)]
+ Diffusion on language model embeddings for protein sequence generation
+ [[arXiv:2403.03726](https://arxiv.org/abs/2403.03726)]
+ AMP-Diffusion: Integrating Latent Diffusion with Protein Language Models for Antimicrobial Peptide Generation
+ [[bioRxiv 2024.03.03.583201](https://www.biorxiv.org/content/10.1101/2024.03.03.583201v1)]
+ Preference optimization of protein language models as a multi-objective binder design paradigm
+ [[arXiv:2403.04187](https://arxiv.org/abs/2403.04187)]
+ Machine learning-aided design and screening of an emergent protein function in synthetic cells
+ [[Nat Commun 15, 2010 (2024)](https://www.nature.com/articles/s41467-024-46203-0)][[code](https://github.com/BelaFrohn/synMinE)]
+ Context-dependent design of induced-fit enzymes using deep learning generates well-expressed, thermally stable and active enzymes
+ [[Proceedings of the National Academy of Sciences 121.11(2024)](https://www.pnas.org/doi/10.1073/pnas.2313809121)]
*Papers last week, updated on 2024.03.15:*
+ A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
+ [[arXiv:2403.00485](https://arxiv.org/abs/2403.00485)] • review
+ PPFlow: Target-Aware Peptide Design with Torsional Flow Matching
+ [[bioRxiv 2024.03.07.583831](https://www.biorxiv.org/content/10.1101/2024.03.07.583831v1)][[Supplementary](https://www.biorxiv.org/content/biorxiv/early/2024/03/08/2024.03.07.583831/DC1/embed/media-1.zip)]
+ Blueprinting extendable nanomaterials with standardized protein blocks
+ [[Nature (2024)](https://www.nature.com/articles/s41586-024-07188-4)][[RosettaScripts](https://github.com/tfhuddy/2023-manuscript-materials)]
+ Combining machine learning with structure-based protein design to predict and engineer post-translational modifications of proteins
+ [[PLOS Computational Biology 20(3): e1011939](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011939)][[code](https://github.com/meilerlab/PTMPrediction)]
------
<p align="center">
<br>
Expand Down Expand Up @@ -118,7 +113,7 @@
<strong><a href="#7-other-tasks">7) Other</a></strong>
<br>
<a href="#71-effects-of-mutation--fitness-landscape">Effects of mutations & Fitness Landscape</a> •
<a href="#72-protein-language-models-ptm-and-representation-learning">Protein Language Model & Representation Learning</a> •
<a href="#72-protein-language-models-plm-and-representation-learning">Protein Language Model & Representation Learning</a> •
<a href="#73-molecular-design-models">Molecular Design Model</a>
</p>

Expand Down Expand Up @@ -189,7 +184,7 @@
- [6.6 Transformer-based](#66-transformer-based)
- [7. Other tasks](#7-other-tasks)
- [7.1 Effects of mutation \& Fitness Landscape](#71-effects-of-mutation--fitness-landscape)
- [7.2 Protein Language Models (PTM) and representation learning](#72-protein-language-models-ptm-and-representation-learning)
- [7.2 Protein Language Models (pLM) and representation learning](#72-protein-language-models-plm-and-representation-learning)
- [7.3 Molecular Design Models](#73-molecular-design-models)
- [7.3.1 Gradient optimization](#731-gradient-optimization)
- [7.3.2 Optimized sampling](#732-optimized-sampling) -->
Expand All @@ -200,7 +195,7 @@

**FLIP: Benchmark tasks in fitness landscape inference for proteins**
Christian Dallago, Jody Mou, Kadina E Johnston, Bruce Wittmann, Nick Bhattacharya, Samuel Goldman, Ali Madani, Kevin K Yang
[NeurIPS 2021 Datasets and Benchmarks Track](https://openreview.net/forum?id=p2dMLEwL8tF)/[bioRxiv 2021](https://www.biorxiv.org/content/10.1101/2021.11.09.467890v2)[website](https://benchmark.protein.properties/)[code](https://github.com/J-SNACKKB/FLIP)[supplementary](https://www.biorxiv.org/content/biorxiv/early/2022/01/19/2021.11.09.467890/DC1/embed/media-1.pdf)
[NeurIPS 2021 Datasets and Benchmarks Track](https://openreview.net/forum?id=p2dMLEwL8tF)/[bioRxiv 2021](https://www.biorxiv.org/content/10.1101/2021.11.09.467890v2)[website](https://benchmark.protein.properties/)[code](https://github.com/J-SNACKKB/FLIP)[Supplementary](https://www.biorxiv.org/content/biorxiv/early/2022/01/19/2021.11.09.467890/DC1/embed/media-1.pdf)

**A Benchmark Framework for Evaluating Structure-to-Sequence Models for Protein Design**
Jeffrey Chan, Seyone Chithrananda, David Brookes, Sam Sinai
Expand Down Expand Up @@ -1179,6 +1174,10 @@ Marissa D Dolorfino, Anastassia A Vorobieva
He, Jieling, Wenxu Wu, and Xiaowo Wang.
[Synthetic and Systems Biotechnology (2024)](https://www.sciencedirect.com/science/article/pii/S2405805X24000115)

**Blueprinting extendable nanomaterials with standardized protein blocks**
Huddy, T.F., Hsia, Y., Kibler, R.D. et al.
[Nature (2024)](https://www.nature.com/articles/s41586-024-07188-4)[RosettaScripts](https://github.com/tfhuddy/2023-manuscript-materials)

### 4.6 GAN-based

**De novo protein design for novel folds using guided conditional Wasserstein generative adversarial networks**
Expand Down Expand Up @@ -1709,6 +1708,10 @@ Ruffolo, J.A., Madani, A.
Liuzhenghao Lv, Zongying Lin, Hao Li, Yuyang Liu, Jiaxi Cui, Calvin Yu-Chian Chen, Li Yuan, Yonghong Tian
[arXiv:2402.16445](https://arxiv.org/abs/2402.16445)[code](https://arxiv.org/pdf/2402.16445.pdf)

**Combining machine learning with structure-based protein design to predict and engineer post-translational modifications of proteins**
Ertelt M, Mulligan VK, Maguire JB, Lyskov S, Moretti R, et al.
[PLOS Computational Biology 20(3): e1011939](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011939)[code](https://github.com/meilerlab/PTMPrediction)

### 5.5 ResNet-based

**Accelerating protein design using autoregressive generative models**
Expand Down Expand Up @@ -1769,6 +1772,10 @@ Aryo Pradipta Gema, Michał Kobiela, Achille Fraisse, Ajitha Rajan, Diego A. Oya
Yanzheng Wang, Boyue Wang, Tianyu Shi, Jie Fu, Yi Zhou, Zhizhuo Zhang
[bioRxiv 2023.11.06.565922](https://www.biorxiv.org/content/10.1101/2023.11.06.565922v1)

**Integrating Protein Structure Prediction and Bayesian Optimization for Peptide Design**
Manshour, Negin, et al.
[NeurIPS 2023 Generative AI and Biology (GenBio) Workshop. 2023](https://openreview.net/forum?id=CsjGuWD7hk)

### 5.7 RL-based

**Model-based reinforcement learning for biological sequence design**
Expand Down Expand Up @@ -2089,6 +2096,10 @@ Zhenqiao Song, Yunlong Zhao, Yufei Song, Wenxian Shi, Yang Yang, Lei Li
Weian Mao, Muzhi Zhu, Zheng Sun, Shuaike Shen, Lin Yuanbo Wu, Hao Chen, Chunhua Shen
[arXiv:2310.11802](https://arxiv.org/abs/2310.11802)/[ICLR 2024 under review](https://openreview.net/forum?id=9UIGyJJpay)

**A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications**
Jiaqi Han, Jiacheng Cen, Liming Wu, Zongzhao Li, Xiangzhe Kong, Rui Jiao, Ziyang Yu, Tingyang Xu, Fandi Wu, Zihe Wang, Hongteng Xu, Zhewei Wei, Yang Liu, Yu Rong, Wenbing Huang
[arXiv:2403.00485](https://arxiv.org/abs/2403.00485) • review

### 6.6 Transformer-based

**Protein Sequence and Structure Co-Design with Equivariant Translation**
Expand All @@ -2097,7 +2108,7 @@ Chence Shi, Chuanrui Wang, Jiarui Lu, Bozitao Zhong, Jian Tang

**Deep Learning for Flexible and Site-Specific Protein Docking and Design**
Matt McPartlon, Jinbo Xu
[bioRxiv 2023.04.01.535079](https://www.biorxiv.org/content/10.1101/2023.04.01.535079v1)[Title](https://github.com/drorlab/DIPS)
[bioRxiv 2023.04.01.535079](https://www.biorxiv.org/content/10.1101/2023.04.01.535079v1)[code](https://github.com/drorlab/DIPS)

**Full-Atom Protein Pocket Design via Iterative Refinement**
Zaixi Zhang, Zepu Lu, Zhongkai Hao, Marinka Zitnik, Qi Liu
Expand All @@ -2123,6 +2134,10 @@ Cheng Tan, Zhangyang Gao, Stan Z. Li
Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, Tommi Jaakkola
[arXiv:2402.04997](https://arxiv.org/abs/2402.04997)[code](https://github.com/andrew-cr/discrete_flow_models)[lecture](https://www.youtube.com/watch?v=yzc29vhM2Aw)

**PPFlow: Target-Aware Peptide Design with Torsional Flow Matching**
Haitao Lin, Odin Zhang, Huifeng Zhao, Dejun Jiang, Lirong Wu, Zicheng Liu, Yufei Huang, Stan Z. Li
[bioRxiv 2024.03.07.583831](https://www.biorxiv.org/content/10.1101/2024.03.07.583831v1)[Supplementary](https://www.biorxiv.org/content/biorxiv/early/2024/03/08/2024.03.07.583831/DC1/embed/media-1.zip)

## 7. Other tasks

### 7.1 Effects of mutation & Fitness Landscape
Expand Down Expand Up @@ -2283,7 +2298,7 @@ Zhiqiang Zhong, Davide Mottin
Kohyama, S., Frohn, B.P., Babl, L. et al.
[Nat Commun 15, 2010 (2024)](https://www.nature.com/articles/s41467-024-46203-0)[code](https://github.com/BelaFrohn/synMinE)

### 7.2 Protein Language Models (PTM) and representation learning
### 7.2 Protein Language Models (pLM) and representation learning

> More detailed protein representation learning list:
>[Lirong Wu](https://github.com/LirongWu)'s [awesome-protein-representation-learning](https://github.com/LirongWu/awesome-protein-representation-learning)
Expand Down

0 comments on commit b3994c2

Please sign in to comment.