Author: Pingcheng Jian, Chao Yang, Di Guo, Huaping Liu, Fuchun Sun
We provide the code for Adversairial Skil Learning for Robust Manipulation in this repository.
- This codebase requires Robel and other dependencies in your conda environment with pip:
$ pip install -e .
- if you want to install some extra development tools, using:
$ pip install -e .[dev]
- train the DoublePick-v1
python train/train.py --algo adversarial_double_pick_sac --env-name DoublePick-v1 --cuda True --seed 1
- train the protagonist and adversary in DClawTurnFixed-v0
python train/adversarial_robel_train.py
- train normal SAC policy in DClawTurnFixed-v0
python train/robel_train.py
- test protagonist against adversary in DoublePick-v1
python test/adversarial_test_double_pick.py --algo adversarial_double_pick_sac --env-name DoublePick-v1 --seed 121
- test normal SAC policy against adversary in DoublePick-v1
python test/adversarial_test_double_pick_normal.py --algo adversarial_double_pick_sac --env-name DoublePick-v1 --seed 121
- test protagonist or normal SAC policy against random attack in DoublePick-v1
python test/adversarial_test_double_pick_random_noise.py --algo adversarial_double_pick_sac --env-name DoublePick-v1 --seed 121
- test protagonist against adversary in DClawTurnFixed-v0
python test/ad_test_robel.py --ad_factor 0.5 --env-name DClawTurnFixed-v0 --po_agent robust
- test normal SAC policy against adversary in DClawTurnFixed-v0
python test/ad_test_robel.py --ad_factor 0.5 --env-name DClawTurnFixed-v0 --po_agent normal
- test protagonist against random noise in DClawTurnFixed-v0
python test/ad_test_robel.py --ad_factor 0.5 --env-name DClawTurnFixed-v0 --po_agent robust
- test normal SAC policy against random noise in DClawTurnFixed-v0
python test/ad_noise_test_robel.py --ad_factor 0.5 --env-name DClawTurnFixed-v0 --po_agent normal