-
Notifications
You must be signed in to change notification settings - Fork 650
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add implementation of knowledge-aware recommendation model KGIN #800
Open
wenqisun
wants to merge
4
commits into
RUCAIBox:0.2.x
Choose a base branch
from
wenqisun:0.2.x
base: 0.2.x
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+450
−0
Open
Changes from 1 commit
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next
Next commit
Add implementation of knowledge-aware model KGIN.
commit 0a5712c4ea47599c5612dba984403004832bf321
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,415 @@ | ||
# -*- coding: utf-8 -*- | ||
# @Time : 2021/3/25 | ||
# @Author : Wenqi Sun | ||
# @Email : wenqisun@pku.edu.cn | ||
|
||
r""" | ||
KGIN | ||
################################################## | ||
Reference: | ||
Xiang Wang et al. "Learning Intents behind Interactions with Knowledge Graph for Recommendation." in WWW 2021. | ||
Reference code: | ||
https://github.com/huangtinglin/Knowledge_Graph_based_Intent_Network | ||
""" | ||
|
||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import networkx as nx | ||
import scipy.sparse as sp | ||
from tqdm import tqdm | ||
from torch_scatter import scatter_mean | ||
from collections import defaultdict | ||
|
||
from recbole.model.abstract_recommender import KnowledgeRecommender | ||
from recbole.model.init import xavier_normal_initialization, xavier_uniform_initialization | ||
from recbole.model.loss import BPRLoss, EmbLoss | ||
from recbole.utils import InputType | ||
|
||
|
||
class Aggregator(nn.Module): | ||
""" | ||
Relational Path-aware Convolution Network | ||
""" | ||
|
||
def __init__(self, n_users, n_factors): | ||
super(Aggregator, self).__init__() | ||
self.n_users = n_users | ||
self.n_factors = n_factors | ||
|
||
def forward( | ||
self, entity_emb, user_emb, latent_embedding, edge_index, edge_type, interact_mat, weight, disen_weight_att | ||
): | ||
n_entities = entity_emb.shape[0] | ||
channel = entity_emb.shape[1] | ||
n_users = self.n_users | ||
n_factors = self.n_factors | ||
"""KG aggregate""" | ||
head, tail = edge_index | ||
edge_relation_emb = weight[edge_type - 1] # exclude interact, remap [1, n_relations) to [0, n_relations-1) | ||
neigh_relation_emb = entity_emb[tail] * edge_relation_emb # [-1, channel] | ||
entity_agg = scatter_mean(src=neigh_relation_emb, index=head, dim_size=n_entities, dim=0) | ||
"""cul user->latent factor attention""" | ||
score_ = torch.mm(user_emb, latent_embedding.weight.t()) | ||
score = nn.Softmax(dim=1)(score_).unsqueeze(-1) # [n_users, n_factors, 1] | ||
"""user aggregate""" | ||
user_agg = torch.sparse.mm(interact_mat, entity_emb) # [n_users, channel] | ||
disen_weight = torch.mm(nn.Softmax(dim=-1)(disen_weight_att), weight).expand(n_users, n_factors, channel) | ||
user_agg = user_agg * (disen_weight * score).sum(dim=1) + user_agg # [n_users, channel] | ||
|
||
return entity_agg, user_agg | ||
|
||
|
||
class GraphConv(nn.Module): | ||
""" | ||
Graph Convolutional Network | ||
""" | ||
|
||
def __init__( | ||
self, | ||
channel, | ||
n_hops, | ||
n_users, | ||
n_factors, | ||
n_relations, | ||
interact_mat, | ||
ind, | ||
tmp, | ||
node_dropout_rate=0.5, | ||
mess_dropout_rate=0.1 | ||
): | ||
super(GraphConv, self).__init__() | ||
|
||
self.convs = nn.ModuleList() | ||
self.interact_mat = interact_mat | ||
self.n_relations = n_relations | ||
self.n_users = n_users | ||
self.n_factors = n_factors | ||
self.node_dropout_rate = node_dropout_rate | ||
self.mess_dropout_rate = mess_dropout_rate | ||
self.ind = ind | ||
|
||
self.temperature = tmp | ||
|
||
initializer = nn.init.xavier_uniform_ | ||
weight = initializer(torch.empty(n_relations - 1, channel)) # not include interact | ||
self.weight = nn.Parameter(weight) # [n_relations - 1, in_channel] | ||
|
||
disen_weight_att = initializer(torch.empty(n_factors, n_relations - 1)) | ||
self.disen_weight_att = nn.Parameter(disen_weight_att) | ||
|
||
for i in range(n_hops): | ||
self.convs.append(Aggregator(n_users=n_users, n_factors=n_factors)) | ||
|
||
self.dropout = nn.Dropout(p=mess_dropout_rate) # mess dropout | ||
|
||
def _edge_sampling(self, edge_index, edge_type, rate=0.5): | ||
# edge_index: [2, -1] | ||
# edge_type: [-1] | ||
n_edges = edge_index.shape[1] | ||
random_indices = np.random.choice(n_edges, size=int(n_edges * rate), replace=False) | ||
return edge_index[:, random_indices], edge_type[random_indices] | ||
|
||
def _sparse_dropout(self, x, rate=0.5): | ||
noise_shape = x._nnz() | ||
|
||
random_tensor = rate | ||
random_tensor += torch.rand(noise_shape).to(x.device) | ||
dropout_mask = torch.floor(random_tensor).type(torch.bool) | ||
i = x._indices() | ||
v = x._values() | ||
|
||
i = i[:, dropout_mask] | ||
v = v[dropout_mask] | ||
|
||
out = torch.sparse.FloatTensor(i, v, x.shape).to(x.device) | ||
return out * (1. / (1 - rate)) | ||
|
||
def _cul_cor(self): | ||
|
||
def CosineSimilarity(tensor_1, tensor_2): | ||
# tensor_1, tensor_2: [channel] | ||
normalized_tensor_1 = tensor_1 / tensor_1.norm(dim=0, keepdim=True) | ||
normalized_tensor_2 = tensor_2 / tensor_2.norm(dim=0, keepdim=True) | ||
return (normalized_tensor_1 * normalized_tensor_2).sum(dim=0) ** 2 # no negative | ||
|
||
def DistanceCorrelation(tensor_1, tensor_2): | ||
# tensor_1, tensor_2: [channel] | ||
# ref: https://en.wikipedia.org/wiki/Distance_correlation | ||
channel = tensor_1.shape[0] | ||
zeros = torch.zeros(channel, channel).to(tensor_1.device) | ||
zero = torch.zeros(1).to(tensor_1.device) | ||
tensor_1, tensor_2 = tensor_1.unsqueeze(-1), tensor_2.unsqueeze(-1) | ||
"""cul distance matrix""" | ||
a_, b_ = torch.matmul(tensor_1, tensor_1.t()) * 2, \ | ||
torch.matmul(tensor_2, tensor_2.t()) * 2 # [channel, channel] | ||
tensor_1_square, tensor_2_square = tensor_1 ** 2, tensor_2 ** 2 | ||
a, b = torch.sqrt(torch.max(tensor_1_square - a_ + tensor_1_square.t(), zeros) + 1e-8), \ | ||
torch.sqrt(torch.max(tensor_2_square - b_ + tensor_2_square.t(), zeros) + 1e-8) # [channel, channel] | ||
"""cul distance correlation""" | ||
A = a - a.mean(dim=0, keepdim=True) - a.mean(dim=1, keepdim=True) + a.mean() | ||
B = b - b.mean(dim=0, keepdim=True) - b.mean(dim=1, keepdim=True) + b.mean() | ||
dcov_AB = torch.sqrt(torch.max((A * B).sum() / channel ** 2, zero) + 1e-8) | ||
dcov_AA = torch.sqrt(torch.max((A * A).sum() / channel ** 2, zero) + 1e-8) | ||
dcov_BB = torch.sqrt(torch.max((B * B).sum() / channel ** 2, zero) + 1e-8) | ||
return dcov_AB / torch.sqrt(dcov_AA * dcov_BB + 1e-8) | ||
|
||
def MutualInformation(): | ||
# disen_T: [num_factor, dimension] | ||
disen_T = self.disen_weight_att.t() | ||
|
||
# normalized_disen_T: [num_factor, dimension] | ||
normalized_disen_T = disen_T / disen_T.norm(dim=1, keepdim=True) | ||
|
||
pos_scores = torch.sum(normalized_disen_T * normalized_disen_T, dim=1) | ||
ttl_scores = torch.sum(torch.mm(disen_T, self.disen_weight_att), dim=1) | ||
|
||
pos_scores = torch.exp(pos_scores / self.temperature) | ||
ttl_scores = torch.exp(ttl_scores / self.temperature) | ||
|
||
mi_score = -torch.sum(torch.log(pos_scores / ttl_scores)) | ||
return mi_score | ||
|
||
"""cul similarity for each latent factor weight pairs""" | ||
if self.ind == 'mi': | ||
return MutualInformation() | ||
else: | ||
cor = 0 | ||
for i in range(self.n_factors): | ||
for j in range(i + 1, self.n_factors): | ||
if self.ind == 'distance': | ||
cor += DistanceCorrelation(self.disen_weight_att[i], self.disen_weight_att[j]) | ||
else: | ||
cor += CosineSimilarity(self.disen_weight_att[i], self.disen_weight_att[j]) | ||
return cor | ||
|
||
def forward( | ||
self, | ||
user_emb, | ||
entity_emb, | ||
latent_embedding, | ||
edge_index, | ||
edge_type, | ||
interact_mat, | ||
mess_dropout=True, | ||
node_dropout=False | ||
): | ||
"""node dropout""" | ||
if node_dropout: | ||
edge_index, edge_type = self._edge_sampling(edge_index, edge_type, self.node_dropout_rate) | ||
interact_mat = self._sparse_dropout(interact_mat, self.node_dropout_rate) | ||
|
||
entity_res_emb = entity_emb # [n_entity, channel] | ||
user_res_emb = user_emb # [n_users, channel] | ||
cor = self._cul_cor() | ||
for i in range(len(self.convs)): | ||
entity_emb, user_emb = self.convs[i]( | ||
entity_emb, user_emb, latent_embedding, edge_index, edge_type, interact_mat, self.weight, | ||
self.disen_weight_att | ||
) | ||
"""message dropout""" | ||
if mess_dropout: | ||
entity_emb = self.dropout(entity_emb) | ||
user_emb = self.dropout(user_emb) | ||
entity_emb = F.normalize(entity_emb) | ||
user_emb = F.normalize(user_emb) | ||
"""result emb""" | ||
entity_res_emb = torch.add(entity_res_emb, entity_emb) | ||
user_res_emb = torch.add(user_res_emb, user_emb) | ||
|
||
return entity_res_emb, user_res_emb, cor | ||
|
||
|
||
class KGIN(KnowledgeRecommender): | ||
r"""KGIN is a knowledge-aware recommendation model. It combines knowledge graph and the user-item interaction | ||
graph to a new graph called collaborative knowledge graph (CKG). This model explores intents behind a user-item | ||
interaction by using auxiliary item knowledge. | ||
""" | ||
|
||
input_type = InputType.PAIRWISE | ||
|
||
def __init__(self, config, dataset): | ||
super(KGIN, self).__init__(config, dataset) | ||
|
||
# load parameters info | ||
self.embedding_size = config['embedding_size'] | ||
self.n_factors = config['n_factors'] | ||
self.context_hops = config['context_hops'] | ||
self.decay = config['l2'] | ||
self.sim_decay = config['sim_regularity'] | ||
self.node_dropout = config['node_dropout'] | ||
self.node_dropout_rate = config['node_dropout_rate'] | ||
self.mess_dropout = config['mess_dropout'] | ||
self.mess_dropout_rate = config['mess_dropout_rate'] | ||
self.ind = config['ind'] | ||
self.reg_weight = config['reg_weight'] | ||
self.temperature = config['temperature'] | ||
|
||
# define layers and loss | ||
self.n_nodes = self.n_users + self.n_entities | ||
self.user_embedding = nn.Embedding(self.n_users, self.embedding_size) | ||
self.entity_embedding = nn.Embedding(self.n_entities, self.embedding_size) | ||
self.latent_embedding = nn.Embedding(self.n_factors, self.embedding_size) | ||
self.mf_loss = BPRLoss() | ||
self.reg_loss = EmbLoss() | ||
self.restore_user_e = None | ||
self.restore_entity_e = None | ||
|
||
# load dataset info | ||
self.kg_graph = dataset.kg_graph(form='coo', value_field='relation_id') | ||
self.triplets = zip(self.kg_graph.row, self.kg_graph.data, self.kg_graph.col) | ||
self.interaction_feat = dataset.dataset.inter_feat | ||
self.interactions = zip( | ||
self.interaction_feat[self.USER_ID].numpy(), self.interaction_feat[self.ITEM_ID].numpy() | ||
) | ||
self.graph, self.relation_dict = self.init_graph(self.interactions, self.triplets) | ||
self.edge_index, self.edge_type = self._get_edges(self.graph) | ||
self.adj_mat_list, self.mean_mat_list = self.init_sparse_relational_graph(self.relation_dict) | ||
self.adj_mat = self.mean_mat_list[0] | ||
self.interact_mat = self._convert_sp_mat_to_sp_tensor(self.adj_mat).to(self.device) | ||
self.gcn = self.init_model() | ||
|
||
# parameters initialization | ||
self.apply(xavier_uniform_initialization) | ||
|
||
def init_graph(self, interactions, triplets): | ||
graph = nx.MultiDiGraph() | ||
rd = defaultdict(list) | ||
|
||
for u_id, i_id in tqdm(interactions, ascii=True): | ||
rd[0].append([u_id, i_id]) | ||
|
||
for h_id, r_id, t_id in tqdm(triplets, ascii=True): | ||
graph.add_edge(h_id, t_id, key=r_id) | ||
rd[r_id].append([h_id, t_id]) | ||
|
||
return graph, rd | ||
|
||
def init_sparse_relational_graph(self, relation_dict): | ||
|
||
def _si_norm_lap(adj): | ||
# D^{-1}A | ||
rowsum = np.array(adj.sum(1)) | ||
d_inv = np.power(rowsum, -1).flatten() | ||
d_inv[np.isinf(d_inv)] = 0. | ||
d_mat_inv = sp.diags(d_inv) | ||
|
||
norm_adj = d_mat_inv.dot(adj) | ||
return norm_adj.tocoo() | ||
|
||
adj_mat_list = [] | ||
for r_id in tqdm(relation_dict.keys()): | ||
np_mat = np.array(relation_dict[r_id]) | ||
if r_id == 0: | ||
cf = np_mat.copy() | ||
cf[:, 1] = cf[:, 1] + self.n_users # [0, n_items) -> [n_users, n_users+n_items) | ||
vals = [1.] * len(cf) | ||
adj = sp.coo_matrix((vals, (cf[:, 0], cf[:, 1])), shape=(self.n_nodes, self.n_nodes)) | ||
else: | ||
vals = [1.] * len(np_mat) | ||
adj = sp.coo_matrix((vals, (np_mat[:, 0], np_mat[:, 1])), shape=(self.n_nodes, self.n_nodes)) | ||
adj_mat_list.append(adj) | ||
|
||
mean_mat_list = [_si_norm_lap(mat) for mat in adj_mat_list] | ||
# interaction: user->item, [n_users, n_entities] | ||
mean_mat_list[0] = mean_mat_list[0].tocsr()[:self.n_users, self.n_users:].tocoo() | ||
|
||
return adj_mat_list, mean_mat_list | ||
|
||
def init_model(self): | ||
return GraphConv( | ||
channel=self.embedding_size, | ||
n_hops=self.context_hops, | ||
n_users=self.n_users, | ||
n_relations=self.n_relations, | ||
n_factors=self.n_factors, | ||
interact_mat=self.interact_mat, | ||
ind=self.ind, | ||
tmp=self.temperature, | ||
node_dropout_rate=self.node_dropout_rate, | ||
mess_dropout_rate=self.mess_dropout_rate | ||
) | ||
|
||
def _convert_sp_mat_to_sp_tensor(self, X): | ||
coo = X.tocoo() | ||
i = torch.LongTensor([coo.row, coo.col]) | ||
v = torch.from_numpy(coo.data).float() | ||
return torch.sparse.FloatTensor(i, v, coo.shape) | ||
|
||
def _get_edges(self, graph): | ||
graph_tensor = torch.tensor(list(graph.edges)) # [-1, 3] | ||
index = graph_tensor[:, :-1] # [-1, 2] | ||
type = graph_tensor[:, -1] # [-1, 1] | ||
return index.t().long().to(self.device), type.long().to(self.device) | ||
|
||
def forward(self): | ||
user_embeddings = self.user_embedding.weight | ||
entity_embeddings = self.entity_embedding.weight | ||
# entity_gcn_emb: [n_entity, channel] | ||
# user_gcn_emb: [n_users, channel] | ||
entity_gcn_emb, user_gcn_emb, cor = self.gcn( | ||
user_embeddings, | ||
entity_embeddings, | ||
self.latent_embedding, | ||
self.edge_index, | ||
self.edge_type, | ||
self.interact_mat, | ||
mess_dropout=self.mess_dropout, | ||
node_dropout=self.node_dropout | ||
) | ||
|
||
return user_gcn_emb, entity_gcn_emb, cor | ||
|
||
def calculate_loss(self, interaction): | ||
r"""Calculate the training loss for a batch data of KG. | ||
Args: | ||
interaction (Interaction): Interaction class of the batch. | ||
Returns: | ||
torch.Tensor: Training loss, shape: [] | ||
""" | ||
|
||
if self.restore_user_e is not None or self.restore_entity_e is not None: | ||
self.restore_user_e, self.restore_entity_e = None, None | ||
|
||
user = interaction[self.USER_ID] | ||
pos_item = interaction[self.ITEM_ID] | ||
neg_item = interaction[self.NEG_ITEM_ID] | ||
|
||
user_all_embeddings, entity_all_embeddings, cor = self.forward() | ||
u_embeddings = user_all_embeddings[user] | ||
pos_embeddings = entity_all_embeddings[pos_item] | ||
neg_embeddings = entity_all_embeddings[neg_item] | ||
|
||
pos_scores = torch.mul(u_embeddings, pos_embeddings).sum(dim=1) | ||
neg_scores = torch.mul(u_embeddings, neg_embeddings).sum(dim=1) | ||
mf_loss = self.mf_loss(pos_scores, neg_scores) | ||
reg_loss = self.reg_loss(u_embeddings, pos_embeddings, neg_embeddings) | ||
cor_loss = self.sim_decay * cor | ||
loss = mf_loss + self.reg_weight * reg_loss + cor_loss | ||
return loss | ||
|
||
def predict(self, interaction): | ||
user = interaction[self.USER_ID] | ||
item = interaction[self.ITEM_ID] | ||
|
||
user_all_embeddings, entity_all_embeddings, cor = self.forward() | ||
|
||
u_embeddings = user_all_embeddings[user] | ||
i_embeddings = entity_all_embeddings[item] | ||
scores = torch.mul(u_embeddings, i_embeddings).sum(dim=1) | ||
return scores | ||
|
||
def full_sort_predict(self, interaction): | ||
user = interaction[self.USER_ID] | ||
if self.restore_user_e is None or self.restore_entity_e is None: | ||
self.restore_user_e, self.restore_entity_e, cor = self.forward() | ||
u_embeddings = self.restore_user_e[user] | ||
i_embeddings = self.restore_entity_e[:self.n_items] | ||
|
||
scores = torch.matmul(u_embeddings, i_embeddings.transpose(0, 1)) | ||
|
||
return scores.view(-1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
embedding_size: 64 | ||
reg_weight: 1e-5 | ||
aggregator_type: 'bi' | ||
node_dropout: True | ||
node_dropout_rate: 0.5 | ||
mess_dropout: True | ||
mess_dropout_rate: 0.1 | ||
l2: 1e-5 | ||
sim_regularity: 1e-4 | ||
context_hops: 3 | ||
n_factors: 4 | ||
ind: 'distance' | ||
temperature: 0.2 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
self.adj_mat_list
is defined but not used andself.mean_mat_list
is only used to assign value toself.adj_mat
.Therefore,
self.init_sparse_relational_graph()
can be simplified.