Skip to content

RapidataAI/crowd-eval

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Crowd Evaluation for T2I

A Python library for integrating crowd evaluation into your machine learning training loops. This library provides asynchronous, non-blocking evaluation of model outputs (currently supporting image generation) with automatic logging to Weights & Biases (wandb).

Features

  • Asynchronous Evaluation: Evaluations run in the background without blocking your training loop
  • Wandb Integration: Results are automatically logged to your wandb runs with proper ordering
  • Image Evaluation: Built-in support for evaluating generated images on multiple criteria
  • Crowd-in-the-Loop: Uses Rapidata for high-quality crowd evaluation
  • Easy Integration: Add evaluation to your training loop with just a few lines of code

Quick Start

import wandb
from src.crowd_eval.checkpoint_evaluation.image_checkpoint_evaluator import ImageEvaluator

# Initialize wandb
run = wandb.init(project="my-project")

# Create evaluator
evaluator = ImageEvaluator(wandb_run=run, model_name="my-model")

# In your training loop
for step in range(100):
    # ... your training code ...
    
    # Generate or load validation images (every N steps)
    if step % 10 == 0:
        validation_images = ["path/to/image_1.png", "path/to/image_2.png"]
        
        # Fire-and-forget evaluation - returns immediately!
        evaluator.evaluate(validation_images)
    
    # ... continue training ...

# Wait for all evaluations to complete before finishing
evaluator.wait_for_all_evaluations()
run.finish()

Installation

Prerequisites

Pip install (recommended)

pip install crowd-eval

Local install

Prerequisites

Install uv if you haven't already:

# For MacOS/Linux
curl -LsSf https://astral.sh/uv/install.sh | sh

# For Windows
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"

Setup Instructions

  1. Create and activate a virtual environment:
    uv venv
    
    # On Unix/macOS
    source .venv/bin/activate
    
    # On Windows
    .venv\Scripts\activate
  2. Install dependencies:
    uv sync

Environment Setup (optional for different usecases)

Create a .env file in your project root:

OPENAI_API_KEY=your_openai_api_key  # If running the example file
RAPIDATA_CLIENT_ID=your_rapidata_client_id # If running on a server
RAPIDATA_CLIENT_SECRET=your_rapidata_client_secret # If running on a server

Detailed Usage

Image Evaluation

The ImageEvaluator evaluates generated images on three key metrics:

  1. Preference: Overall crowd preference for the image
  2. Alignment: How well the image matches its text description
  3. Coherence: Visual quality and absence of artifacts

Image Requirements

For the evaluator to function properly, your image files should adhere to the following naming convention: the image name must end with "_{prompt_id}". The rest of the filename structure is not significant.

Where {prompt_id} corresponds to prompt IDs from the evaluation dataset. The evaluator will automatically validate that your images match available prompts.

Complete Example with Image Generation

To run this, make sure you run the following commands:

uv venv
source .venv/bin/activate
uv sync
uv add openai dotenv

and log in to wandb:

wandb login
import os
import sys
import openai
import requests
import wandb
from src.crowd_eval.checkpoint_evaluation.image_checkpoint_evaluator import ImageEvaluator
from dotenv import load_dotenv

load_dotenv()

# Setup
openai.api_key = os.getenv("OPENAI_API_KEY")
run = wandb.init(project="dalle-evaluation")
evaluator = ImageEvaluator(wandb_run=run, model_name="dalle-3")

def generate_and_save_image(prompt: str, file_location: str) -> str:
    """Generate image using DALL-E and save to disk."""
    os.makedirs(os.path.dirname(file_location), exist_ok=True)
    
    response = openai.images.generate(
        model="dall-e-3",
        prompt=prompt,
        size="1024x1024",
        quality="standard",
        n=1
    )
    
    # Download and save image
    image_url = response.data[0].url
    image_data = requests.get(image_url).content
    with open(file_location, 'wb') as f:
        f.write(image_data)
    
    return file_location

if __name__ == "__main__":
    # Training simulation
    for step in range(3):
        # Simulate training
        run.log({"Some training metric": step})
        
        # Generate images for evaluation (using first 2 prompts)
        validation_images = [
            generate_and_save_image(prompt, f"validation_images/generated_image_run_{step}_{id}.png")
            for id, prompt in list(evaluator.prompts.items())[:2]
        ]
        
        # Evaluate asynchronously
        evaluator.evaluate(validation_images)

    print("This will run immediately, but the evaluations will run in the background.")

    # Wait for all evaluations
    evaluator.wait_for_all_evaluations()
    run.finish()

Custom Baseline

By default, the ImageEvaluator compares your generated images against a pre-defined set of baseline images from GPT-4o. However, you can define your own custom baseline images and prompts for more targeted evaluation scenarios.

Setting Up a Custom Baseline

Use the define_baseline() method to specify your own baseline images and prompts:

# Define custom baseline with your own images and prompts
evaluator.define_baseline(
    image_paths=[
        "path/to/baseline_image_1.png",
        "path/to/baseline_image_2.png",
        "https://example.com/remote_baseline.jpg"  # URLs also supported
    ],
    prompts=[
        "A serene mountain landscape",
        "A futuristic city skyline", 
        "An abstract geometric pattern"
    ]
)

How Custom Baselines Work

When you define a custom baseline:

  1. Image Naming: Your generated images no longer need to follow the *_{prompt_id}.png naming convention
  2. Direct Comparison: Each generated image is compared directly against the corresponding baseline image at the same index
  3. Custom Prompts: The evaluation uses your provided prompts instead of the default dataset
  4. Matched Pairs: The number of generated images must match the number of baseline images

Complete Example with Custom Baseline

import wandb
from src.crowd_eval.checkpoint_evaluation.image_checkpoint_evaluator import ImageEvaluator

# Initialize
run = wandb.init(project="custom-baseline-eval")
evaluator = ImageEvaluator(wandb_run=run, model_name="my-model")

# Set up custom baseline
evaluator.define_baseline(
    image_paths=[
        "baselines/reference_1.png",
        "baselines/reference_2.png"
    ],
    prompts=[
        "A red sports car",
        "A sunset over the ocean"
    ]
)

# Training loop
for step in range(10):
    # Your training code here...
    
    if step % 5 == 0:
        # Generate images for your custom prompts
        generated_images = [
            f"outputs/step_{step}_car.png",      # Compares against baselines/reference_1.png
            f"outputs/step_{step}_sunset.png"   # Compares against baselines/reference_2.png
        ]
        
        # Evaluate against your custom baseline
        evaluator.evaluate(generated_images)

# Wait for evaluations and finish
evaluator.wait_for_all_evaluations()
run.finish()

Benefits of Custom Baselines

  • Domain-Specific Evaluation: Use baselines relevant to your specific use case
  • Consistent Comparison: Compare against the same reference images across training runs
  • Flexible Prompts: Use any prompts that make sense for your model's intended application
  • Quality Control: Establish known-good reference images as quality benchmarks

Troubleshooting

Common Issues

"Invalid prompt ids" error:

  • Ensure image filenames follow the pattern: *_{prompt_id}.png
  • Check that {prompt_id} exists in the evaluation dataset

Evaluations not appearing in wandb:

  • Call evaluator.wait_for_all_evaluations() before run.finish()
  • Check your Rapidata API credentials
  • Verify internet connectivity for API calls

"Module not found" error:

  • Ensure you have the correct dependencies installed
  • Ensure your example code is run from the root of the repository

Environment Variables

Required:

  • RAPIDATA_CLIENT_ID: Your Rapidata client ID (Not required if running locally)
  • RAPIDATA_CLIENT_SECRET: Your Rapidata client secret (Not required if running locally)

Optional:

  • OPENAI_API_KEY: For image generation examples