Converts labelimg meta data to yolo format. See https://github.com/tzutalin/labelImg
$ python labelimg_data_converter.py -h
usage: python labelimg_data_converter.py <comma delimited list of classs names> such as "cat,dog,horse,pig"
Converts labelimg meta data to yolo meta data. The original image files
(*.jpg) and lalbelimg meta data XML files (*.xml) must exist in sub-
directories named "movie<M_ID>" where <M_ID> is an positive integer number. In
the sub-directories, the jpg and xml files must exist with file names as
"frame<F_ID>.jpg" and "frame<F_ID>.xml where <F_ID> is either 3- or 4-digit
number. For example, <source_dir>/movie1/frame001.xml or
<source_dir>/movie123456/frame1234.xml
positional arguments:
classes [REQUIRED] a comma delimited list of
class_name:class_id pairs. space characters are
preserved. e.g., "dog:1,cat:0,horse:3,peter rabbit:5"
is translated to {"cat": 0, "dog": 1, "horse": 3,
"peter rabbit": 5}
optional arguments:
-h, --help show this help message and exit
-s SRC, --source SRC directory where the original labelimg meta data XML
and image JPG files resides. default: "source"
-d DEST, --destination DEST
directory where the sanitized and converted yolo meta
data TXT and image JPG as well as the original
labelimg meta data XML will be stored. default:
"destination"
-b SUBDIR, --subdir SUBDIR
sub-directory where the generated files are stored
beneath the destination directory. default: "data"
-e HEADER, --header HEADER
string used as header of the generated yolo meta data
TXT file names. default: "sample"
-p {(0.0 .. 1.0) exclusive}, --percentage_test {(0.0 .. 1.0) exclusive}
float number between 0.0 and 1.0 exclusive to specify
the amount of labeled images to be used for validation
in training. default: 0.1, which means 10 percent.