Deep learning model for predicting values from order book data using Transformer and LSTM architectures.
- Order book feature engineering
- Transformer and LSTM model implementations
- Time series k-fold cross-validation
- TensorBoard integration
- GPU support
├── src/
│ ├── dataloader.py # Data preprocessing
│ ├── LSTM_utils.py # LSTM model
│ ├── transformer_utils.py # Transformer model
│ └── utils.py # Utility functions
├── inference_model.py # Model inference
├── k-fold.py # Cross validation
└── requirements.txt # Dependencies
Install dependencies:
pip install -r requirements.txt
Run inference:
python inference_model.py <path_to_csv>
Model parameters can be adjusted in the Config class:
- Window size and batch size
- Model architecture (Transformer/LSTM)
- Training parameters (learning rate, epochs)
- Feature reduction options