Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

split_behaviors function #50

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
170 changes: 170 additions & 0 deletions playground/split_behavior_discussion.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
farm <- brfarmersDiffNet
str(farm)
farm$vertex.static.attrs$liveout
class(farm$vertex.dyn.attrs)
class(farm$vertex.static.attrs)

med_data <- medInnovationsDiffNet
str(med_data)
class(med_data$vertex.static.attrs$city)

k_fam <- kfamilyDiffNet
str(k_fam)
class(k_fam$vertex.static.attrs$study)

n=40; t=5
diffnet <- rdiffnet(40, 5, seed.p.adopt = .2)
X <- matrix(diffnet[["real_threshold"]], ncol=t, nrow=n, byrow = FALSE)
#ans0 <- exposure(diffnet, attrs=X)
net_1 <- rdiffnet(n, t, seed.nodes = 'random',
exposure.args = list(attrs = matrix(runif(n), nrow=n, ncol=t, byrow = FALSE)))
summary(net_1)
str(net_1)
class(net_1$toa)
class(net_1$adopt)
class(net_1$cumadopt)
class(net_1$vertex.static.attrs)
class(net_1$graph.attrs)
class(net_1$meta)

n=40; t=5
net_2 <- rdiffnet(n, t, seed.p.adopt = list(0.5,0.5),
exposure.args = list(attrs = X))
summary(net_2)
str(net_2)
class(net_2$toa)
class(net_2$adopt)
class(net_2$cumadopt)
class(net_2$vertex.static.attrs)
class(net_2$graph.attrs)
class(net_2$meta)

split_behaviors <- function(diffnet_obj) {

diffnets <- rep(diffnet_obj, ncol(diffnet_obj$toa))
diffnets_list <- list()

#ver_static_att_nams <- colnames(diffnet_obj$vertex.static.attrs)

for (q in 1:ncol(diffnet_obj$toa)) {

for (i in seq_along(diffnet_obj)) {
if (!is.null(diffnets[i]$toa)) {
#print(diffnets[i]$toa)
diffnets[i]$toa <- diffnet_obj$toa[, q, drop = FALSE]
} else if (!is.null(diffnets[i]$adopt)) {
diffnets[i]$adopt <- diffnet_obj$adopt[[q]]
} else if (!is.null(diffnets[i]$cumadopt)) {
diffnets[i]$cumadopt <- diffnet_obj$cumadopt[[q]]
}# else if (!is.null(diffnets[i]$vertex.dyn.attrs)) {
# diffnets[i]$vertex.dyn.attrs <- setNames(data.frame(diffnet_obj$vertex.static.attrs[, q]), ver_static_att_nams[q])
#}
}

# diffnets[2]$toa <- diffnet_obj$toa[, q, drop = FALSE]
# diffnets[[q]]$adopt <- diffnet_obj$adopt[[q]]
# diffnets[[q]]$cumadopt <- diffnet_obj$cumadopt[[q]]

diffnets_list[[q]] <- diffnets[q*(1:length(diffnet_obj))]
}

return(diffnets_list)

# for (q in ncol(net_2$toa)) {
#
# #graph <- net_2$graph
# #
# diff_obj_2$toa <- net_2$toa[,q]
# #class(toa_slice)
# adopt_slice <- net_2$adopt[[q]]
# #class(adopt_slice)
# cumadopt_slice <- net_2$cumadopt[[q]]
# #class(cumadopt_slice)
# ver_static_att_slice <- setNames(data.frame(net_2$vertex.static.attrs[, q]), ver_static_att_nams[q])
# #class(ver_static_att_slice)
#
# meta_slice$behavior <- strsplit(meta_slice$behavior, ", ")[[1]][q]
# #class(meta_slice)
# }
}

###############################################################################

split_behaviors <- function(diffnet_obj) {

diffnets <- replicate(ncol(diffnet_obj$toa), diffnet_obj, simplify = FALSE)

for (q in 1:ncol(diffnet_obj$toa)) {

diffnets[[q]]$toa <- as.integer(diffnet_obj$toa[, q, drop = FALSE])
names(diffnets[[q]]$toa) <- rownames(diffnet_obj$toa)

diffnets[[q]]$adopt <- diffnet_obj$adopt[[q]]

diffnets[[q]]$cumadopt <- diffnet_obj$cumadopt[[q]]

}
return(diffnets)
}

test_that("toa, adopt, and cumadopt should be equal! (split_behaviors)", {
set.seed(12131)
n <- 50
t <- 5
graph <- rgraph_ws(n, 4, p=.3)
seed.nodes <- c(1,5,7,10)
thr <- runif(n, .2,.4)

# Generating identical networks
net_single <- rdiffnet(seed.graph = graph, seed.nodes = seed.nodes, seed.p.adopt = 0.1,
t = t, rewire = FALSE, threshold.dist = thr)

net_multiple <- rdiffnet(seed.graph = graph, seed.nodes = seed.nodes, seed.p.adopt = list(0.1, 0.1),
t = t, rewire = FALSE, threshold.dist = thr)

net_single_from_multiple <- split_behaviors(net_multiple)
net_single_from_multiple_1 <- net_single_from_multiple[[1]]

expect_equal(net_single_from_multiple_1$toa, net_single$toa) # Error: names for current but not for target
expect_equal(net_single_from_multiple_1$adopt, net_single$adopt)
expect_equal(net_single_from_multiple_1$cumadopt, net_single$cumadopt)
})

# Let's check the plots.

plot_diffnet(net_single$graph, net_single$adopt)
plot_diffnet(net_single_from_multiple_1$graph, net_single_from_multiple_1$adopt)

plot_infectsuscep(net_single$graph, net_single$toa)
plot_infectsuscep(net_single_from_multiple_1$graph, net_single_from_multiple_1$toa)

set.seed(1234) # they are almost the same
plot_threshold(net_single$graph,
exposure(net_single$graph, net_single$cumadopt),
net_single$toa)
plot_threshold(net_single_from_multiple_1$graph,
exposure(net_single_from_multiple_1$graph, net_single$cumadopt),
net_single_from_multiple_1$toa)

################################################################################

set.seed(1234)
net_2 <- rdiffnet(50,5, seed.p.adopt = list(0.1, 0.1))
#str(net_2)
net_2_splitted <- split_behaviors(net_2)
net_1_from_2 <- net_2_splitted[[1]]
expect_s3_class(net_1_from_2, "diffnet")
#str(net_1_from_2)
#str_net_1_from_2 <- capture.output(str(net_1_from_2))

net_1 <- rdiffnet(50,5, seed.p.adopt = 0.1, seed.nodes = c(1,2,3,4,5))
net_1_1 <- rdiffnet(50,5, seed.p.adopt = 0.1, seed.nodes = c(1,2,3,4,5))
expect_equivalent(net_1$toa, net_1_1$toa)

#str(net_1)
#str_net_1 <- capture.output(str(net_1))

expect_equivalent(net_1_from_2$toa, net_1$toa)
expect_equal(net_1_from_2$adopt, net_1$adopt)
expect_equal(net_1_from_2$cumadopt, net_1$cumadopt)
#identical(str_net_1_from_2, str_net_1)
Loading